In this paper, we investigate uniqueness problems of differential polynomials of meromorphic functions. Let a, b be non-zero constants and let n, k be positive integers satisfying n ≥ 3k + 12. If f^n+ af^(k)and g^n+ ag^(k)share b CM and the b-points of f^n+ af^(k)are not the zeros of f and g, then f and g are either equal or closely related.
In this paper, we investigate the growth of the meromorphic solutions of the following nonlinear difference equations F(Z)N+pN-1(F)=0,where n ≥ 2 and small functions as proposed by Yang than 1. Pn-1(f) is a difference polynomial of degree at most n - 1 in f with coefficients. Moreover, we give two examples to show that one conjecture and Laine [2] does not hold in general if the hyper-order of f(z) is no less