传统的波达方向(direction of arrival,DOA)估计算法在独立信号和相干信号同时存在时往往失效或者性能下降;因而寻求可以同时估计独立信号和相干信号的测向算法具有重要意义。基于均匀线阵接收到信号的特点,提出了一种简单有效的独立信号和相干信号DOA估计新方法。该方法首先利用求根多重信号分类(root-mutiple signal classification,root-MUSIC)算法进行DOA估计,并根据相干源对应根的特点来消除相干信号的干扰,从而获得独立信号的波达方向;然后利用阵列接收数据协方差矩阵中独立信号的托普利兹(Toeplitz)特性,从中去除独立信号的数据分量,再利用改进矢量重构和总体最小二乘-旋转不变子空间(total least square-estimation of signal parameters via rotational invariance technique,TLS-ESPRIT)算法来估计相干信号的波达方向。理论分析和实验仿真结果表明,所提方法具有一定的阵列扩展能力,且计算量小、估计性能好。
针对二维旋转不变子空间算法(estimation of signal parameters via rotational invariance technigues,ESPRIT)在求解信号时协方差矩阵存在阵列冗余问题,提出一种改进后的二维ESPRIT算法。该算法利用阵列结构原理构造2个互相关矩阵,然后由合并的特殊大矩阵进行奇异值分解来估计信号子空间,最后利用2D-ESPRIT方法实现二维测向。该算法估计精度高,计算量小,通过空间平滑后既能对相干信号进行估计,也能同时估计非相干信号。
针对二维DOA(direction of arrival)估计所需阵元数量较多且阵元利用率较低的问题,提出了一种低阵元冗余度的阵列模型,将最小冗余线阵的应用拓展到二维DOA估计领域,降低了阵列冗余度。同时,利用传播算子算法估计二维波达方向,该算法无需谱峰搜索,且避免了大矩阵的特征分解,在解决计算量问题上有着巨大优势。最小冗余线阵的设置方式,用较少的阵元获得了较大的阵列有效孔径,从而弥补了传播算子算法在低信噪比条件下性能下降的缺点,具有了更好的低信噪比适应能力。该文从理论上论证了三平行最小冗余线阵设置的合理性,仿真实验证明了该方法的有效性。