Owing to the remoteness of the Longriba area and the lack of dating records,it is extremely challenging to reconstruct the chronology and extent of the paleoglaciers in this area.In this paper,we combined limited observational data with automated modelling for paleoglacial reconstructions.We first identified a broadly distributed paleoglacier from satellite imagery and field investigation based on the sediment-landform assemblage principle and dated it to 23.1±1.4~19.5±1.2 ka by ^(10)Be exposure dating,corresponding to the global Last Glacial Maximum(gLGM).Then,we reconstructed the extent and ice surface of 171 paleoglaciers formed during the similar period based on geomorphological evidence and‘ice surface profile’modelling.The results showed that the paleoglacial coverage was 426.5 km2,with an ice volume of 38.1 km^(3),in the Longriba area.The reconstructed equilibrium line altitudes(ELAs)based on modelled ice surfaces yielded an average of 4245±66 m above sea level(asl),~725±73 m lower than the present ELA(4970±29 m asl).The temperature was~5.51-6.68℃lower,and the precipitation was~30-34%less in Longriba,during the gLGM compared to the present day.This glacial advance was mainly driven by colder climate that was synchronous with Northern Hemisphere cooling events.
YANG Wei-linHAN Ye-songPENG XuRAN Ze-zeLIU QingLIU Geng-nian
We present geomorphological evidence for multiple glacial fluctuations during the Quaternary in the Taniantaweng Mountain, which is situated at the transition zone of the southeastern Qinghai-Tibet Plateau and the Yunnan-Guizhou Plateau. To reconstruct the history of glacial evolution during the Quaternary Glaciation, we present a ~13000 km^2 geomorphologic map(1:440,000) for the Quaternary glaciations, as well as three electron spin resonance(ESR) ages and three optically stimulated luminescence(OSL) ages from the landforms. By integrating these with ages from previous studies, four major glacial advances are identified during marine oxygen isotope stages(MIS) 6, 3, 2 and 1. This glacial chronology is in reasonable agreement with existing glacial chronologies from other parts of the Hengduan Mountains and surrounding mountains. Glaciers had extended to the Yuqu River during the glacial maximum advance(MIS 6), but became successively more restricted from MIS 3 to MIS 1. The glacial distribution show that precipitation brought by the south Asian monsoon might play a primary role in driving glacial advances during the last glacial period in the southeastern Qinghai-Tibet Plateau.
ZHANG WeiCHAI LeIAN S.EvansLIU LiangLI Ya-pengQIAO Jing-ruTANG Qian-yuSUN Bo
金沙江上游巴塘-中咱河段位于青藏高原东南缘,该河段两岸岸坡发育众多的大型古滑坡,且部分古滑坡曾堵塞金沙江形成了堰塞湖,特米大型古滑坡堰塞湖是其中之一。关于特米古滑坡堰塞湖的形成与演化过程目前尚未见有过详细的报道。本文在野外调查的基础上,结合遥感影像解译和年代学测试,对特米古滑坡堰塞湖的地貌和沉积特征进行了详细研究,并对其形成与演化过程进行了分析。研究结果表明,特米古滑坡堰塞湖很可能是由该地区的古地震活动触发大型滑坡并堵塞金沙江形成的,最大湖面面积约为1.42×10^(7) m^(2),库容蓄水量约为1.46×10^(9) m^(3)。该古堰塞湖的形成时间约为1.8 ka BP,其溃决消亡的时间约为1.4 ka BP,溃决洪峰流量约为55858 m^(3)/s,该滑坡堰塞湖持续稳定了约400年的时间。