您的位置: 专家智库 > >

国家自然科学基金(11101140)

作品数:4 被引量:9H指数:1
相关作者:唐矛宁孟庆欣更多>>
相关机构:湖州师范学院更多>>
发文基金:国家自然科学基金Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry国家教育部博士点基金更多>>
相关领域:理学自动化与计算机技术更多>>

文献类型

  • 4篇期刊文章
  • 1篇会议论文

领域

  • 5篇理学
  • 1篇自动化与计算...

主题

  • 3篇BACKWA...
  • 1篇倒向随机微分...
  • 1篇正倒向随机微...
  • 1篇随机微分
  • 1篇随机微分方程
  • 1篇微分方程
  • 1篇均衡点
  • 1篇变分
  • 1篇变分公式
  • 1篇NASH均衡
  • 1篇NASH均衡...
  • 1篇PROCES...
  • 1篇SOME
  • 1篇STOCHA...
  • 1篇STOCHA...
  • 1篇VARIAT...
  • 1篇VY
  • 1篇ANALYS...
  • 1篇APPLIC...
  • 1篇CONTRO...

机构

  • 1篇湖州师范学院

作者

  • 1篇孟庆欣
  • 1篇唐矛宁

传媒

  • 1篇Acta M...
  • 1篇Applie...
  • 1篇Scienc...
  • 1篇中国科学:数...

年份

  • 1篇2016
  • 1篇2014
  • 3篇2012
4 条 记 录,以下是 1-5
排序方式:
Optimal variational principle for backward stochastic control systems associated with Lévy processes被引量:8
2012年
The paper is concerned with optimal control of backward stochastic differentiM equation (BSDE) driven by Teugel's martingales and an independent multi-dimensional Brownian motion, where Teugel's martingales are a family of pairwise strongly orthonormal martingales associated with L6vy processes (see e.g., Nualart and Schoutens' paper in 2000). We derive the necessary and sufficient conditions for the existence of the optimal control by means of convex variation methods and duality techniques. As an application, the optimal control problem of linear backward stochastic differential equation with a quadratic cost criteria (or backward linear-quadratic problem, or BLQ problem for short) is discussed and characterized by a stochastic Hamilton system.
TANG MaoNing 1 & ZHANG Qi 2,1 Department of Mathematical Sciences,Huzhou University,Huzhou 313000,China
Maximum Principle for Backward Stochastic Systems Associated with Lvy Processes Under Partial Information
<正>This paper studies an optimal control problem for a backward stochastic control systems associated with Lev...
Meng Qingxin~(2
文献传递
A variational formula for controlled backward stochastic partial differential equations and some application
2014年
An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to be convex, and all coefficients of the system are allowed to be random. A variational formula for the functional in a given control process direction is derived, by the Hamiltonian and associated adjoint system. As an application, a global stochastic maximum principle of Pontraygins type for the optimal controls is established.
MENG Qing-xinTANG Mao-ning
Viscosity Analysis on the Boltzmann Equation
2012年
This paper is devoted to investigating the asymptotic properties of the renormalized so- lution to the viscosity equation δtfε + v · △↓xfε = Q(fε, fε) + ε△vfε as ε →0+. We deduce that the renormalized solution of the viscosity equation approaches to the one of the Boltzmann equation in L^1((0, T) × RN × R^N). The proof is based on compactness analysis and velocity averaging theory.
Min Ling ZHENGXiao Ping YANG
带跳的完全耦合正倒向随机系统的非零和随机微分对策的变分公式及其应用被引量:1
2016年
本文主要研究由Brown运动和Poisson随机鞅测度共同驱动的完全耦合的正倒向随机系统的开环双人非零和随机微分对策问题.利用Hamilton函数和相应的对偶方程直接获得了性能指标的一个变分公式,其中对偶方程是一个线性正倒向随机微分方程,并且对经典的状态过程和性能指标的变分计算及其相应的Taylor展开均不需要考虑.作为应用,利用获得的变分公式在一个统一的框架下证明了开环Nash均衡点存在的一个必要条件(随机最大值原理)和一个充分条件(验证定理).本文中系统的控制区域要求是非空凸集,而且所有对手的可允许控制允许同时出现在状态方程的漂移项、扩散项和跳跃项.
唐矛宁孟庆欣
关键词:正倒向随机微分方程NASH均衡点
共1页<1>
聚类工具0