Two Q-switched Nd:YAG lasers at 1064 nm wavelength have been employed to produce plasmas on aluminum-based alloy in single- and collinear double-pulse laser induced breakdown spectroscopy (LIBS). Time resolved technique was used for detecting emission sig- nal by spectrometer equipped with ICCD detector. The intensity calibration of spectral response was performed by using deuterium and tungsten halogen lamps. Time evolution of the plasma temperature and electron number density was investigated in single- and collinear double-pulse experiments. Based on the investigation of plasma parameters, the emission signal enhancement mechanism was discussed qualitatively.
The partial and total photorecombination cross sections of the ground-state C V ion in the KLL and KLM resonant energy regions were calculated in detail by using the Dirac atomic R-matrix code based on a fully relativistic R-matrix method. Meanwhile, the principal resonant lines in each photorecombination channel have been classified according to the calculated transition energies and probabilities from the KLL and KLM resonant states to the 1s2nl(n = 2, 3 and l = s, p, d)final states. The validity of these calculations is assessed by comparison with previously published experimental and theoretical data. The good agreement between the present calculated results and those obtained using different approaches confirms the accuracy of the present results. In addition, it is found that the damping effect can be neglected for the KLL resonant, but not for the KLM resonant.