采用微波等离子体化学气相沉积(MPCVD)系统,在单晶硅基底上,以三聚氰胺为氮源实现纳米金刚石(NCD)薄膜N原子掺杂,并通过控制反应气体的压力制备出不同条件的掺氮NCD薄膜。用场发射电子显微镜(FESEM)、原子力探针显微镜(AFM)和激光拉曼光谱(Raman)分析了不同气压对掺氮NCD薄膜表面形貌和物相成分的影响。结果显示:当压力由8 k Pa增加至12 k Pa时,薄膜颗粒尺寸减小,颗粒之间更加致密;表面粗糙度(RMS)也由90.4nm减少至40.4 nm;薄膜中金刚石相逐渐向SP2相转化。继续增加压力至15 k Pa时,薄膜颗粒尺寸呈增加趋势,并且分布不均匀;RMS也增加至131.5 nm;同时薄膜中SP2相含量达到最高。对12 k Pa条件下制备的掺氮NCD薄膜样品进行光电子能谱(XPS)检测,表明薄膜主要以SP2相碳含量为主,并且氮掺杂含量可达2.73%。
采用微波等离子体化学气相沉积(MPCVD)方法,通过改变CH_4浓度,在单晶Si(100)基底上制备掺氮纳米金刚石(NCD)薄膜,并以所制备的掺氮NCD薄膜为阴极材料,通过场发射扫描电子显微镜(FESEM)、原子力扫描探针显微镜(AFM)、Raman光谱和S波段射频电子枪等测试方法系统地研究了掺氮NCD薄膜的微观结构对微波场发射性能的影响。结果表明:在CH_4浓度(体积比)为4%下,制备的掺氮NCD薄膜的颗粒呈多面体,而且颗粒尺寸和表面粗糙度较大,薄膜中金刚石相含量较高,这些微观结构使得微波场发射性能较高,在电场强度(E_0)为67.7 V·μm^(-1)时,发射电流密度(J0)高达144.8 m A·cm^(-2)。当升高CH_4浓度,所制备的掺氮NCD薄膜的颗粒尺寸减小而且连成条状结构,表面粗糙度也逐渐降低,薄膜中金刚石相减少、非金刚石相增加,这些微观结构的改变使得微波场发射性能逐渐降低。如当CH_4浓度增加至6%时,在电场强度E_0=67.7 V·μm^(-1)时,场发射电流密度降至37.9 m A·cm^(-2)。结果表明:低CH_4浓度下,掺氮NCD薄膜所具有的微观结构有利于微波场发射。
以P型(100)取向的单晶硅片为衬底,采用微波等离子体化学气相沉积(MPCVD)法,通过在反应气源中添加不同比例的CO2制备光学级金刚石膜。通过Raman光谱、X射线衍射(XRD)和扫描电子显微镜(SEM)表征金刚石膜的结晶质量、晶粒取向和表面形貌。结果表明:增加反应气源中CO2/CH4流量比,在不改变金刚石膜物相纯度的情况下,有利于提高金刚石薄膜的结晶质量;适量的CO2/CH4流量比有利于获得晶粒形貌规则、完整且尺寸均匀的高[111]取向的金刚石膜。傅里叶变换红外光谱(FT-IR)(红外光透过率)测试发现晶界密度小、晶粒尺寸均匀、形貌规则且表面平整的自支撑金刚石膜具有更高的红外(IR)透过率,表明在反应气源中适量地引入CO2有利于提高金刚石膜的光学性能,这可能与CO2引入后产生的含氧基团能抑制非金刚石相,促进取向金刚石相的生长有关;在微波功率6 k W、气压13 k Pa、基片温度850℃、CH4流量为15 ml·min-1(标准状况)的条件下,CO2/CH4流量比为0.45时可制备出具有高质量和高红外透过率的金刚石光学膜。