Rock-masses are divided into many closed blocks by deterministic and stochastic discontinuities and engineering interfaces in complex rock-mass engineering. Determining the sizes, shapes, and adjacent relations of blocks is important for stability analysis of fractured rock masses. Here we propose an algorithm for identifying spatial blocks based on a hierarchical 3D Rock-mass Structure Model (RSM). First, a model is built composed of deterministic discontinuities, engineering interfaces, and the earth's surface, and the deterministic blocks surrounded by these interfaces are traced. Then, in each deter-ministic block, a network model of stochastic discontinuities is built and the stochastic blocks are traced. Building a unitary wire frame that connects all interfaces seamlessly is the key for our algorithm to identify the above two kinds of blocks. Using this algorithm, geometric models can be built for block theory, discrete element method, and discontinuous deformation analysis.
XU NengXiong School of Engineering and Technology, China University of Geosciences, Beijing 100083, China