To understand the effects of niacin on the ruminal microbial ecology of cattle under high-concentrate diet condition, Illumina MiSeq sequencing technology was used. Three cattle with rumen cannula were used in a 3 x 3 Latin-square design trial. Three diets were fed to these cattle during 3 periods for 3 days, respectively: high-forage diet(HF; forage-to-concentrate ratio = 80:20), high-concentrate diet(HC;forage-to-concentrate ratio=20:80), and HC supplemented with 800 mg/kg niacin(HCN). Ruminal pH was measured before feeding and every 2 h after initiating feeding. Ruminal fluid was sampled at the end of each period for microbial DNA extraction. Overall, our findings revealed that subacute ruminal acidosis(SARA) was induced and the a-diversity of ruminal bacterial community decreased in the cattle of HC group. Adding niacin in HC could relieve the symptoms of SARA in the cattle but the ruminal pH value and the Shannon index of ruminal bacterial community of HCN group were still lower than those of HF group. Whatever the diet was, the ruminal bacterial community of cattle was dominated by Bacteroidetes,Firmicutes and Proteobacteria. High-concentrate diet significantly increased the abundance of Prevotella,and decreased the abundance of Paraprevotella, Sporobacter, Ruminococcus and Treponema than HF.Compared with HC, HCN had a trend to decrease the percentage of Prevotella, and to increase the abundance of Succiniclasticum, Acetivibrio and Treponema. Increasing concentrate ratio could decrease ruminal pH value, and change the ruminal microbial composition. Adding niacin in HC could increase the ruminal pH value, alter the ruminal microbial composition.
Dan LuoYufei GaoYouyou LuMingren QuXiaowen XiongLanjiao XuXianghui ZhaoKe PanKehui Ouyang