Successful gene vectors should be with high transfection efficiency and minimal cytotoxicity. Natural polysaccharides, due to their good biocompatibility and biodegradability, have been widely studied and applied. Amylopectin is one of polysaccharides with dendritic structure and numerous hydroxyl groups that could be used for subsequent modification. In this work, a series of dendritic cationic gene vectors comprising amylopectin backbones and poly(2-(dimethylamino) ethyl methacrylate)(PDMAEMA) side chains with different lengths(termed as AMY-PDs) were readily prepared by atom transfer radical polymerization(ATRP). The gene condensation ability, cytotoxicity and gene transfection of AMY-PDs carriers were investigated. In comparison with "gold-standard" poly(ethyleneimine)(PEI, 25 k Da), the AMY-PDs exhibited higher transfection efficiency with lower cytotoxicity. AMY-PDs could be further modified with Au nanoparticles(termed as AMY-PD@Au). The potential of the AMY-PD@Au vectors to be utilized as a CT contrast agent for imaging of cancer cells was investigated. Such AMY-PD@Au vectors may realize gene therapy with the ability of real-time imaging.
Photodynamic therapy plays an important role in cancer treatment.In this work,methylene blue(MB)-embedded calcium carbonate nanorods(CaCO_3-MB NRs)have been synthesized for p H-responsive photodynamic therapy and ultrasound imaging.The morphology of CaCO_3-MB NRs can be controlled by modulating the concentration of Na_2CO_3 aqueous solution.The generation of effective reactive oxygen species(ROS)were confirmed by 1,3-diphenylisobenzofuran(DPBF)probe.Both photodynamic therapy performance and echogenic performance of CaCO_3-MB NRs were investigated to confirm the feasibility of CaCO_3-MB nanohybrids for ultrasound image-guided photodynamic therapy.
Efficient local gene transfection on a tissue scaffold is dependent on good cell-adhesion characteristics. In this work, the thermoresponsive gelatin-functionalized polycaprolactone(PCL) films were proposed for improvement of cell adhesion and intelligent recovery of gene-transfected cells. Functional copolymer brushes(PCL-g-P(NIPAAm-co-MAAS)) were first prepared via surface-initiated ATRP of N-isopropylacrylamide(NIPAAm) and methacrylic acid sodium salt(MAAS) from the initiatorfuncationalized PCL surfaces. The pendant carboxyl end-groups of the PCL-g-P(NIPAAm-co-MAAS) surface were subsequently coupled with gelatin via carbodiimide chemistry to produce the thermo-responsive gelatin-functionalized PCL surface. The thermo-responsive gelatin-functionalized PCL film surface can improve cell adhesion and proliferation above the LCST of P(NIPAAm) without destroying cell detachment properties at lower temperatures. The dense transfected cells can be recovered simply by lowering culture temperature. The thermo-responsive gelatin-functionalized PCL films are potentially useful as intelligent adhesion modifiers for directing cellular functions within tissue scaffolds.