The kinetics of the decomposition of acid dissolved titanium slag with a sodium hydroxide system under atmospheric pressure was studied. The effect of reaction temperature, particle size and NaOH-to-slag mass ratio on titanium extraction was investigated. The results show that temperature and particle size have significant influence on titanium extraction. The experimental data of titanium extraction show that the shrinking core model with chemical reaction controlled process is most applicable for the decomposition of slag, with an apparent activation energy of 62.4 kJ.mol^-1. Approximately 85 wt.%-90 wt.% of the titanium can be extracted from the slag under the optimal conditions. In addition, the purity of titanium dioxide obtained in the product is up to 98.5 wt.%.
Oxalic acid was used for the removal of iron from the intermediates of ilmenite leached by KOH liquor. Various parameters, such as pH, temperature, initial oxalate concentration, and illumination were investigated. Meanwhile, it was found that orthorhombic crystal Ti2O2(OH)2(C2O4)-H2O formed as the leaching proceeded. Scanning electronic microscope (SEM) images implied that the formation of Ti2O2(OH)2(C2O4).H2O with good crystallinity proceeded through three stages. Calcining Ti2O2(OH)2(C2O4)·H2O, anatase (350℃) or mtile (550℃) type TiO2 was obtained, respectively. Element analysis found that the calcined product contained 94.9% TiO2 and 2.5% iron oxide, but only about 1600 ppm dissolvable iron oxide was left, which indicates that oxalic acid was comparatively effective on iron oxide removal from the intermediates. Finally, an improved route was proposed for the upgrading of ilmenite into mtile.