Rocky desertification has become a major environmental issue in the karst region of southwestern China.Karst rocky desertification was more severe in regions of limestone soil than in adjacent regions of other soils,despite the relatively higher soil organic matter(SOM)content in limestone soil.The underlying mechanism remains ambiguous.We speculated that the geochemical characteristics of limestone soils in the karst region plays an essential role,especially the high calcium content of limestone soil.To test this hypothesis,we collected limestone soil samples from a limestone soil profile in the southwestern China karst region and extracted humic acid(HA)from these limestone soil samples.We investigated the interaction of Ca^(2+)and three HA samples on a joint experimental platform,which consists of an automatic potentiometric titrator,a UV–visible spectrometer,and a Fluorescence spectrometer.HA solutions were titrated by Ca^(2+)and optical spectra of the HA solutions were monitored during the titration experiments.The results indicated that:(1)the interaction of Ca^(2+)and HA is a combined process of adsorption and complexation.Adsorption dominated the overall distribution behavior of Ca^(2+),which could be fit by Langmuir and Freundlich isotherm models.Complexation was distinguished only when the concentration of Ca2+is low;(2)the changes of UV–visible spectroscopy and excitation–emission matrix fluorescencespectroscopy spectra of HA samples when they were binding with Ca^(2+)implied the apparent molecular size and structure of HA became larger and more complex;(3)the combination of Ca^(2+)and HA plays an important role in the SOM preservation of limestone soils but the stability of the Ca–HA association was relatively weak.The present study draws attention to maintaining the relatively higher Ca^(2+)concentration in limestone soils in ecologic restoration attempts in karst regions.
Characteristics of phenanthrene and pyrene’s sorption and desorption on two local soils in solutions of simulated groundwater,simulated lung fluid,and simulated saliva were studied with batch equilibrium experiments to understand the fate of PAHs in the karst region of southwestern China and to assess the environmental exposure and the health risk of PAHs.The results showed that the sorption and desorption isotherms of phenanthrene and pyrene on two target soils in the three solution systems could be adequately described by the Freundlich model,while the fitted isotherm parameters for the simulated groundwater solution distinguished notably from those for the simulated body fluid solutions.For the sorption experiments,in the simulated groundwater,the n values were 0.722 and 0.672 for phenanthrene and were 0.724 and0.663 for pyrene,respectively,on the yellow soil and the limestone soil;The log KF values were 3.118 and 3.323 for phenanthrene and were 3.648 and 3.846 for pyrene,respectively,on the yellow soil and the limestone soil.In the simulated body fluids,the n values for phenanthrene and pyrene ranged from 0.622 to 0.836 and from 0.590 to0.865,respectively,and the log KF values of phenanthrene and pyrene ranged from 2.845 to 3.327 and from 3.344 to3.779,respectively.For the desorption experiments,in the simulated groundwater,the n values were 0.662 and 0.744 for phenanthrene and were 0.702 and 0.647 for pyrene,respectively,on the yellow soil and the limestone soil.The log KF values were 3.666 and 3.686 for phenanthrene and were 4.128 and 4.225 for pyrene,respectively,on the yellow soil and the limestone soil.In the simulated body fluids,the n values for phenanthrene and pyrene ranged from 0.612 to 0.668 and from 0.631 to 0.819,respectively,and the log KF values of phenanthrene and pyrene ranged from 3.134 to 3.407 and from 3.533 to 3.839,respectively.The limestone soil had relatively higher log KF values but lower KOC values compared to those of the yellow soil,indicated that the nature of sorbent soils play
Characteristics and distributions of humic acid(HA) and soil organic matter(SOM) in a yellow soil profile and a limestone soil profile of the southwest China Karst area were systematically investigated to reveal their evolutions in different soils of the study area. The results showed that characteristics and distribution of SOM along the two soil profiles were notably different. Total organic carbon(TOC) contents of soil samples decreased just slightly along the limestone soil profile but sharply along the yellow soil profile. TOCs of the limestone soils were significantly higher than those of the corresponding yellow soils, and C/N ratios of SOMs showed a similar variation trend to that of TOCs, indicating that SOM can be better conserved in the limestone soil than in the yellow soil. The soil humic acids were exhaustively extracted and further fractionated according to their apparent molecular weights using ultrafiltration techniques to explore underlying conservation mechanisms. The result showed that C/N ratios of HAs from different limestone soil layers were relatively stable and that large molecular HA fractions predominated the bulk HA of the top soil, indicating that HA in the limestone profile was protected while bio and chemical degradations were retarded. Combined with organic elements contents and mineral contents of two soils, weconcluded that high calcium contents in limestone soils may play a key role in SOM conservation by forming complexation compounds with HAs or/and enclosing SOMs with hypergene CaCO_3 precipitation.
Liangang MaBaohua XiaoXinyue DiWeilin HuangShijie Wang