您的位置: 专家智库 > >

国家自然科学基金(40674081)

作品数:6 被引量:8H指数:3
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:天文地球经济管理一般工业技术理学更多>>

文献类型

  • 6篇中文期刊文章

领域

  • 4篇天文地球
  • 2篇经济管理
  • 1篇轻工技术与工...
  • 1篇一般工业技术
  • 1篇理学

主题

  • 4篇SUN
  • 3篇OBSERV...
  • 3篇MAGNET...
  • 2篇CHROMO...
  • 2篇CORONA...
  • 2篇FLARE
  • 1篇OSCILL...
  • 1篇POINT
  • 1篇POTENT...
  • 1篇QUIET
  • 1篇X2
  • 1篇ACTIVI...
  • 1篇BRIGHT
  • 1篇COOL
  • 1篇DURING
  • 1篇FIELDS
  • 1篇FLARES
  • 1篇INTERA...
  • 1篇LOOPS
  • 1篇MAGNET...

传媒

  • 4篇Resear...
  • 2篇Scienc...

年份

  • 6篇2009
6 条 记 录,以下是 1-6
排序方式:
Flare-induced signals in polarization measurements during the X2.6 flare on 2005 January 15
2009年
Flare-induced signals in polarization measurements which were manifested as apparent polarity reversal in magnetograms have been reported since 1981. We are motivated to further quantify the phenomenon by asking two questions: can we distinguish the flare-induced signals from real magnetic changes during flares, and what we can learn about flare energy release from the flare-induced signals? We select the X2.6 flare that occurred on 2005 January 15, for further study. The flare took place in NOAA active region (AR) 10720 at approximately the central meridian, which makes the interpretation of the vector magnetograms less ambiguous. We have identified that flare-induced signals during this flare appeared in six zones. The zones are located within an average distance of 5 Mm from their weight center to the main magnetic neutral line, have an average size of (0.6±0.4) ×10^17 cm^2, duration of 13±4 min, and flux density change of 181±125 G in the area of reversed polarity. The following new facts have been revealed by this study: (1) the flare-induced signal is also seen in the transverse magnetograms but with smaller magnitude, e.g., about 50 G; (2) the flare-induced signal mainly manifests itself as apparent polarity reversal, but the signal starts and ends as a weakening of flux density; (3) The flare-induced signals appear in phase with the peaks of hard X-ray emission as observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and mostly trace the position of RHESSI hard X-ray footpoint sources. (4) in four zones, it takes place cotemporally with real magnetic changes which persist after the flare. Only for the other two zones does the flux density recover to the pre-flare level immediately after the flare. The physical implications of the flare-induced signal are discussed in view of its relevance to the non-thermal electron precipitation and primary energy release in the flare.
Meng ZhaoJing-Xiu WangSarah MatthewsMing-De DingHui ZhaoChun-Lan Jin
Magnetic non-potentiality on the quiet Sun and the filigree被引量:3
2009年
From the observed vector magnetic fields by the Solar Optical Telescope/ Spectro-Polarimeter aboard the satellite Hinode, we have examined whether or not the quiet Sun magnetic fields are non-potential, and how the G-band filigrees and Ca II network bright points (NBPs) are associated with the magnetic non-potentiality. A sizable quiet region in the disk center is selected for this study. The new findings by the study are as follows. (1) The magnetic fields of the quiet region are obviously non-potential. The region-average shear angle is 40°, the average vertical current is 0.016A m^-2, and the average free magnetic energy density, 2.7× 10^2erg cm^-3. The magnitude of these non-potential quantities is comparable to that in solar active regions. (2) There are overall correlations among current helicity, free magnetic energy and longitudinal fields. The magnetic non-potentiality is mostly concentrated in the close vicinity of network elements which have stronger longitudinal fields. (3) The filigrees and NBPs are magnetically characterized by strong longitudinal fields, large electric helicity, and high free energy density. Because the selected region is away from any enhanced network, these new results can generally be applied to the quiet Sun. The findings imply that stronger network elements play a role in high magnetic non-potentiality in heating the solar atmosphere and in conducting the solar wind.
Meng Zhao Jing-Xiu Wang Chun-Lan Jin Gui-Ping Zhou
关键词:SUN
Interaction between granulation and small-scale magnetic flux observed by Hinode被引量:4
2009年
With the polarimetric observations obtained by the Spectro-Polarimeter on board Hinode, we study the relationship between granular development and magnetic field evolution in the quiet Sun. Six typical cases are displayed to exhibit interaction between granules and magnetic elements, and we have obtained the following results. (1) A granule develops centrosymmetrically when no magnetic flux emerges within the granular cell. (2) A granule develops and splits noncentrosymmetrically while flux emerges at an outer part of the granular cell. (3) Magnetic flux emergence in a cluster of mixed polarities is detected at the position of a granule as soon as the granule breaks up. (4) A dipole emerges accompanied by the development of a granule, and the two elements of the dipole are rooted in the adjacent intergranular lanes and face each other across the granule. Advected by the horizontal granular motion, the positive element of the dipole then cancels with the pre-existing negative flux. (5) Flux cancellation also takes place between a positive element, which is advected by granular flow, and its surrounding negative flux. (6) While magnetic flux cancellation takes place in a granular cell, the granule shrinks and then disappears. (7) Horizontal magnetic fields are enhanced at the places where dipoles emerge and where opposite polarities cancel each other, but only the horizontal fields between the dipolar elements point in an orderly way from the positive elements to the negative ones. Our results reveal that granules and small-scale magnetic fluxes influence each other. Granular flow advects magnetic flux, and magnetic flux evolution suppresses granular development. There exist extremely large Doppler blue-shifts at the site of one canceling magnetic element. This phenomenon may be caused by the upward flow produced by magnetic reconnection below the photosphere.
Jun Zhang Shu-Hong Yang Chun-Lan Jin
关键词:SUN
Chromospheric oscillations observed with BBSO and TRACE被引量:2
2009年
We examine chromospheric oscillations in both a coronal hole (CH) and a quiet Sun (QS) region, by employing Transition Region and Coronal Explorer (TRACE) and Big Bear Solar Observatory (BBSO) data on September 14 and 16, 2004. For the CH, the average oscillation periods of network magnetic field and non-magnetic field (NMF) regions are 257 and 222 s, respectively, and the average period of network field is longer than that of NMF region by 15.8%. In the QS, the average oscillation period is the 225 s for network field and 212 s for the NMF region. The average period of the network field is also longer than that of the NMF region by 6.1%. For the network region, we find that the average period in the CH is longer than that in the QS by 14.2%. This difference between CH and QS is possibly caused by different magnetic configurations i.e. the open magnetic field in the CH and the close field in the QS.
SONG QiaoZHANG Jun
关键词:CHROMOSPHEREOSCILLATIONSQUIETCORONAL
A statistical study on the brightening propagation of post-flare loops被引量:3
2009年
After examining the data observed by TRACE 171 and 195  from May 1998 to December 2006, we choose as our sample 190 (39 X-class and 151 M-class) flare events which display post-flare loops (PFLs). We investigate the brightening propagation of these PFLs of the events in the sample along the magnetic neutral lines. In most of the cases, the length of the flare ribbons (FRs) ranges from 20 to 170 Mm. The propagating duration of the brightening lasts 10-60 min. The velocities of the propagation associated with the flare strength and the length of the FRs, range from 5 to 35 km·s-1. Furthermore, a greater propagating velocity corresponds to a greater deceleration (or acceleration). These PFLs display three types of propagating patterns: (1) the brightening begins at the middle part of a set of PFLs, and propagates bi-directionally towards its both ends; (2) the brightening first appears at one end of a set of PFLs, and then propagates to the other; (3) the initial brightening takes place at two (or more than two) positions on two (or more than two) sets of PFLs, and each brightening propagates bi-directionally along the magnetic neutral line.
LI LePingDUAN HongYuZHANG Jun
关键词:FLARESFIELDSCORONA
Two types of dynamic cool coronal structures observed with STEREO and Hinode
2009年
Solar coronal loops show significant plasma motions during their formation and eruption stages. Dynamic cool coronal structures, on the other hand, are often observed to propagate along coronal loops. We report on the discovery of two types of dynamic cool coronal structures, and characterize their fundamental properties. Using the EUV 304 A images from the Extreme UltraViolet Imager (EUVI) telescope on the Solar TErrestrial RElation Observatory (STEREO) and the Ca Ⅱ filtergrams from the Solar Optical Telescope (SOT) instrument on Hinode, we study the evolution of an EUV arch and the kinematics of cool coronal structures. The EUV 304A observations show that a missile-like plasmoid moves along an arch-shaped trajectory, with an average velocity of 31 km s^- 1. About three hours later, a plasma arch forms along the trajectory, subsequently the top part of the arch fades away and disappears; meanwhile the plasma belonging to the two legs of the arch flows downward to the arch's feet. During the arch formation and disappearance, SOT Ca Ⅱ images explore dynamic cool coronal structures beneath the arch. By tracking these structures, we classify them into two types. Type I is thread- like in shape and flows downward with a greater average velocity of 72 km s-l; finally it combines with a loop fibril at a chromospheric altitude. Type Ⅱ is shape-transformable and sometimes rolling as it flows downward with a smaller velocity of 37 km s-1, then disappears insularly in the chromosphere. It is suggested that the two types of structures are possibly controlled by different magnetic configurations.
Jun Zhang Le-Ping Li
共1页<1>
聚类工具0