An in-situ polymerization method was employed to synthesize the nanosilica/acrylic/epoxy (SAE) hybrid coating on AISI 430 stainless steel (430SS), as compared with a traditional blending method. Mi- crostructures of the blending SAE hybrid coating (BC) and in-situ SAE hybrid coating (ISC) were characterized by transmission electron microscopy (TEM). Corrosion resistance of BC and ISC on 430SS was evaluated by the neutral salt spray test and potentiodynamic polarization technique. Failure mechanism of the BC on 430SS was suggested by the microstructures and corrosion behaviors. Serious aggregation of nanosilica particles in the BC impairs its structural uniformity and induces the flaws formation. These flaws in the BC initiates the failures of pitting, filiform corrosion and peeling which are accelerated by the O2 concentration cell and H+ self-catalysis in chlorine-containing moist environments. The ISC-coated 430SS shows a more advantageous corrosion resistance than that of the BC-coated. The ISC-coated 430SS can suffer the salt spray over 1000 h. Besides, it exhibits a high corrosion potential beyond 0.925 V and good passivation characteristics during the potentiodynamic polarization.
LU HongBinGU MinHaoHUANG JianFengHU YongMENG XiangKang