Ordered mesoporous carbon(OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound(VOC)disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal.
Gang WangBaojuan DouZhongshen ZhangJunhui WangHaier LiuZhengping Hao
Catalytic oxidation is widely used in pollution control technology to remove volatile organic compounds. In this study, Pd/ZSM-5 catalysts with different Pd contents and acidic sites were prepared via the impregnation method. All the catalysts were characterized by means of N2 adsorption- desorption, X-ray fluorescence (XRF), HE temperature programmed reduction (H2-TPR), and NH3 temperature programmed desorption (NH3-TPD). Their catalytic performance was investigated in the oxidation of butyl acetate experiments. The by-products of the reaction were collected in thermal desorption tubes and identified by gas chromatography/mass spectrometry. It was found that the increase of Pd content slightly changed the catalytic activity of butyl acetate oxidation according to the yield of CO2 achieved at 90%, but decreased the cracking by-products, whereas the enhancement of strong acidity over Pd-based catalysts enriched the by-product species. The butyl acetate oxidation process involves a series of reaction steps including protolysis, dehydrogenation, dehydration, cracking, and isomerization. Generally, butyl acetate was cracked to acetic acid and 2- methylpropene and the latter was an intermediate of the other by-products, and the oxidation routes of typical by-products were proposed. Trace amounts of 3-methylpentane, hexane, 2-methylpentane, pentane, and 2-methylbutane originated from iso4merization and protolysis reactions.
Lin YueChi HeZhengping HaoShunbing WangHailin Wang
VOCs play an increasingly important role in affecting air quality and threatening human health in China in recent years,where industry activities show a significant contribution to VOCs emission.In this article we report our long term study of industrial VOCs emissions of six major industries (vehicle manufacturing,printing,equipment coating,electronic manufacturing,furniture manufacturing and bio-pharming) on the aspects of emission characteristics,environmental impact and health risk assessment,and control challenge analysis with the purpose to obtain in-depth understanding of industry VOCs emissions and offer some original basements for national control and management of industry VOCs emissions.This study shows that all these industries give middle or low emission with total VOCs concentration less than 1000 mg/m3 at each exhaust pipe.Benzenes,esters,alcohols,ketones,alkanes,chloroalkanes and alkenes were detected as the major emission components and the most frequently monitored VOCs were benzenes,which varied obviously with different processes and industries.The environmental impact assessments indicate that vehicle manufacturing and benzenes should be prior controlled with the purpose to reduce air pollution.While,health risk assessments suggest that furniture manufacturing and chloroalkanes should be firstly controlled.Control analysis indicates that developing technologies with low cost and high efficiency and establishing and completing specific industry emission standards/regulations are the two key issues in VOCs emission management at present stage.
WANG HaiLinNIE LieLI JingWANG YuFeiWANG GangWANG JunHuiHAO ZhengPing