Interface and surface physics is an important sub-discipline within condensed matter physics in recent decades. Novel concepts like oxide-electronic device are prompted, and their performance and lifetime are highly dependent on the flatness and abruptness of the layer surfaces and interfaces. Reflection high-energy electron diffraction (RHEED), which is extremely sensitive to surface morphology, has proven to be a versatile technique for the growth study of oxide thin films. A differential pumping unit enables an implementation of RHEED to pulsed laser deposition (PLD) systems, ensuring an in situ monitoring of the film growth process in a conventional PLD working oxygen pressure up to 30 Pa. By optimizing the deposition conditions and analyzing the RHEED intensity oscillations, layer-by-layer growth mode can be attained. Thus atomic control of the film surface and unit-cell control of the film thickness become reality. This may lead to an advanced miniaturization in the oxide electronics, and more importantly the discovery of a range of emergent physical properties at the interfaces. Herein we will briefly introduce the principle of high-pressure RHEED and summarize our main results relevant to the effort toward this objective, including the growth and characterization of twinned Laz/3Caj/3MnO3 thin films and ReTiO〉6/2 (Re = La, Nd; ~5 = 0 - 1) AnBnO3n+2 structures, on YSZ-buffered 'Silicon on Insulator' and LaA103 substrates, respectively, as well as the study of the initial structure and growth dynamics of YBazCu307-6 thin films on SrTiO3 substrate. Presently we have realized in situ monitoring and growth mode control during oxide thin film deposition process.
LI JiePENG WeiCHEN KeWANG PingCHU HaiFengCHEN YingFeiZHENG DongNing
Epitaxial La2/3Cal/3MnO3 thin films grown on LaA103 (001) substrates were irradiated with low-energy 120-keV H+ ions over doses ranging from 1012 ions/cm2 to 1017 ions/cm2. The irradiation suppresses the intrinsic insulator-metal (I-M) transition temperature and increases the resistance by reducing the crystallographic symmetry of the films. No irradiation-induced columnar defects were observed in any of the samples. The specific film irradiated at a critical dose around 8 x 1015 ions/cm2 is in a threshold state of the electric insulator where the I-M transition is absent. In an external field of 4 T or higher, the I-M transition is restored and thus an enormous magnetoresistance is observed, while a negative temperature coefficient resumes as the temperature is reduced further. Magnetic relaxation behavior is confirmed in this and other heavily irradiated samples. The results are interpreted in terms of the displacement of oxygen atoms provoked by ion irradiation and the resulting magnetic glassy state, which can be driven into a phase coexistence of metallic ferromagnetic droplets and the insulating glass matrix in a magnetic field.