Using China's ground observations,e.g.,forest inventory,grassland resource,agricultural statistics,climate,and satellite data,we estimate terrestrial vegetation carbon sinks for China's major biomes between 1981 and 2000.The main results are in the following:(1)Forest area and forest biomass car-bon(C)stock increased from 116.5×10^(6) ha and 4.3 Pg C(1 Pg C=10^(15) g C)in the early 1980s to 142.8×10^(6) ha and 5.9 Pg C in the early 2000s,respectively.Forest biomass carbon density increased form 36.9 Mg C/ha(1 Mg C=10^(6) g C)to 41.0 Mg C/ha,with an annual carbon sequestration rate of 0.075 Pg C/a.Grassland,shrub,and crop biomass sequestrate carbon at annual rates of 0.007 Pg C/a,0.014―0.024 Pg C/a,and 0.0125―0.0143 Pg C/a,respectively.(2)The total terrestrial vegetation C sink in China is in a range of 0.096―0.106 Pg C/a between 1981 and 2000,accounting for 14.6%―16.1%of carbon dioxide(CO_(2))emitted by China's industry in the same period.In addition,soil carbon sink is estimated at 0.04―0.07 Pg C/a.Accordingly,carbon sequestration by China's terrestrial ecosystems(vegetation and soil)offsets 20.8%―26.8%of its industrial CO_(2) emission for the study period.(3)Considerable uncertainties exist in the present study,especially in the estimation of soil carbon sinks,and need further intensive investigation in the future.
There is a general agreement that forest ecosystems in the NorthernHemisphere function as significant sinks for atmospheric CO_2; however, their magnitude anddistribution remain large uncertainties. In this paper, we report the carbon (C) stock and itschange of vegetation, forest floor detritus, and mineral soil, annual net biomass increment andlitterfall production, and respiration of vegetation and soils between 1992 to 1994, for threetemperate forest ecosystems, birch (Betula platyphylla) forest, oak (Ouercus liaotungensis) forestand pine (Pinus tabulaeformis) plantation in Mt. Dongling, Beijing, China. We then evaluate the Cbudgets of these forest ecosystems. Our results indicated that total C density (organic C perhectare) of these forests ranged from 250 to 300 t C ha^(-1), of which 35—54 t C ha^(-1) fromvegetation biomass C and 209-244 t C ha^(-1) from soil organic C (1 m depth, including forest floordetritus). Biomass C of all three forests showed a net increase, with 1.33—3.55 t C ha^(-1) a^(-1)during the study period. Litterfall production, vegetation autotrophic respiration, and soilheterotrophic respiration were estimated at 1.63—2.34,2.19—6.93, and 1.81 —3.49 t C ha^(-1)a^(-1), respectively. Ecosystem gross primary production fluctuated between 5.39 and 12.82 t Cha^(-1) a^(-1), about half of which (46%-59%, 3.20-5.89 t C ha^(-1) a^(-1)) was converted to netprimary production. Our results suggested that pine forest fixed C of 4.08 t ha^(-1) a^(-1), whereassecondary forests (birch and oak forest) were nearly in balance in CO_2 exchange between theatmosphere and ecosystems.
FANG JingYun LIU GuoHua ZHU Biao WANG XiaoKe LIU ShaoHui
Above- and belowground biomasses of grasslands are important parameters for characterizing re- gional and global carbon cycles in grassland ecosystems. Compared with the relatively detailed in- formation for aboveground biomass (AGB), belowground biomass (BGB) is poorly reported at the re- gional scales. The present study, based on a total of 113 sampling sites in temperate grassland of the Inner Mongolia, investigated regional distribution patterns of AGB, BGB, vertical distribution of roots, and their relationships with environmental factors. AGB and BGB increased from the southwest to the northeast of the study region. The largest biomass occurred in meadow steppe, with mean AGB and BGB of 196.7 and 1385.2 g/m2, respectively; while the lowest biomass occurred in desert steppe, with an AGB of 56.6 g/m2 and a BGB of 301.0 g/m2. In addition, about 47% of root biomass was distributed in the top 10 cm soil. Further statistical analysis indicated that precipitation was the primary determinant factor in shaping these distribution patterns. Vertical distribution of roots was significantly affected by precipitation, while the effects of soil texture and grassland types were weak.
MA WenHong1,2, YANG YuanHe1, HE JinSheng1, ZENG Hui1,2 & FANG JingYun1 1 Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China 2 School of Environment & Urban Study, Peking University Shenzhen Graduate School, Shenzhen 518055, China
Soil holds the largest nitrogen(N)pool in terrestrial ecosystems,but estimates of soil N stock remain controversial. Storage and spatial distribution of soil N in China were estimated and the relationships between soil N density and environmental factors were explored using data from China's Second National Soil Survey and field investigation in northwest China and the Tibetan Plateau.China's soil N storage at a depth of one meter was estimated at 7.4 Pg,with an average density of 0.84 kg m^(-2).Soil N density appeared to be high in southwest and northeast China and low in the middle areas of the country.Soil N density increased from the arid to semi-arid zone in northern China,and decreased from cold-temperate to tropical zone in the eastern part of the country.An analysis of general linear model suggested that climate and vegetation determined the spatial pattern of soil N density for natural vegetation,which explained 75.4% of the total variance.