Apoptosis,or programmed cell death,is a complex,genetically-determined process involved in the development and maintenance of homeostasis in multicellular organisms.Dysregulation of apoptosis has been implicated in a number of diseases,including cancer and autoimmune disease.Thus,the investigation of apoptotic regulation has evoked considerable interest.Many apoptotic proteins have been shown to be post-translationally modulated,such as by protein cleavage,translocation,protein-protein interaction,and various post-translational modifications,which fall precisely within the range of proteomic analysis.Recently,contemporary proteomic technologies have achieved significant advances and have accelerated research in functional and chemical proteomics,which have been applied to the field of apoptosis research and have the potential to be a driving force for the field.This review highlights some of the major achievements in the application of proteomics in apoptosis research and discusses new directions and challenges for the near future.
WANG LiShun & CHEN GuoQiang Department of Pathophysiology,Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education of China
Acute myeloid leukemia (AML) is a heterogeneous group of hematopoietic malignancies which are characterized by the blockage of hematopoietic cell differentiation with uncontrolled proliferation and/or impaired apoptosis. Over the past 20 years, there has been tremendous progress in the biological, molecular, and cytogenetic aspects of the disease, accompanied by significant advancements in the treatment of AML patients. For example, all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) have been used clinically for effective treatments of patients with acute promyelocytic leukemia (APL, a unique subtype of AML) through differentiation and/or apoptosis induction. More intriguingly, these active compounds-based chemical biological studies greatly accelerated our understanding on leukemogenesis and targeted therapy of AML patients. Based on some recent findings mainly from our group, this review attempts to summarize the related advances from Chinese researchers.
The natural product,1,7-dimethoxy-2-hydroxyxanthone(1),isolated from Securidaca inappendiculate Hassk,has a potential in the treatment of erectile dysfunction due to its significant relaxation activity on rabbit Corpus cavernosum.However,the isolation of compound 1 is problematic because of its high similarity in structure to its analogs.In this paper,the first synthesis of 1 was reported featuring two key reactions:a copper-catalyzed coupling reaction and an intramolecular cyclization.