In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, which will make the energy expression insufficient to reflect the local clarity. Therefore,in this paper,a novel construction method for activity measurement is proposed. Firstly,it uses the wavelet decomposition for the fusion resource image, and then utilizes the high and low frequency wavelet coefficients synthetically. Meantime,it takes the normalized variance as the weight of high-frequency energy. Secondly,it calculates the measurement by the weighted energy,which can be used to measure the local character. Finally,the fusion coefficients can be got. In order to illustrate the superiority of this new method,three kinds of assessing indicators are provided. The experiment results show that,comparing with the traditional methods,this new method weakens the fuzzy and promotes the indicator value. Therefore,it has much more advantages for practical application.
In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial information of the whole image is retained. After the sparse representation, the color labels of the effective elements of the sparse coding dictionary are selected according to the sparse coefficient and then the mixed images are displayed. The generated images maintain spectral distance preservation and have good separability. For local ground objects, the proposed single-pixel mixed array and improved oriented sliver textures methods are integrated to display the specific composition of each pixel. This avoids the confusion of the color presentation in the mixed-pixel color display and can also be used to reconstruct the original hyperspectral data. Finally, the model effectiveness was proved using real data. This method is promising and can find use in many fields, such as energy exploration, environmental monitoring, disaster warning, and so on.
针对传统的高光谱数据解混方法中存在的解混精度不高、丰度图模糊的缺陷,提出一种基于相关向量机的高光谱图像解混方法(unmixing algorithm based on relevance vector machine,UARVM)。其核心思想是采用改进的一对余型的相关向量机将多分类问题转化为多个二分类的问题,且求取出每个样本所对应的归属类别的概率值,即丰度值来完成图像的解混。理论研究和仿真结果表明:相对于传统解混方法,UARVM解混精度高,丰度分布图效果好。