Geochemical and Pb-Sr-Nd isotopic compositions of five Indosinian granitoid intrusions from the western Qinling belt provide insights into basement nature and tectonic affinity. The results show that the western Qinling granitoids incline towards basic in their bulk chemical composition. The granitoids belong to high-K to shoshonitic series with K2O/Na2O=1.04-1.86 and are dominantly metaluminous with A/CNK=0.90-1.05 (most samples have A/CNK of <1.0). They have similar trace elemental compo- sitional patterns. In Sr-Nd isotopic compositions, they display some extent heterogeneity with Isr=0.70682-0.70845, εNd(t)=?4.85 to ?9.17 and TDM=1.26-1.66 Ga. They are characterized by high ra- diogenic Pb isotopic compositions. Their initial Pb isotopic ratios are 206Pb/204Pb=17.996-18.468, 207Pb/204Pb=15.565-15.677 and 208Pb/204Pb=38.082-38.587. Geochemical and Sr-Nd isotopic composi- tions reveal that magma for the granitoids was derived from partial melting of high-K (Rb) basaltic rocks, which might be formed in 900-1400 Ma. It is suggested that a large amount of the Proterozoic high-K (Rb) basaltic rocks, which underlie the Phanerozoic sedimentary cover, constitute the crustal basement of the western Qinling belt. Pb-Sr-Nd isotopic compositional comparison between the east- ern Qinling and the western Qinling Indosinian granitoids indicates that the crustal basement of the western Qinling is distinct from that of the eastern Qinling. The Baoji-Chengdu railway close to south-north orientation can be taken as an approximate boundary between both basements. The Pb-Nd isotopic compositional characteristics of the western Qinling granitoids suggest that the basement of the western Qinling belt has an affinity with the Yangtze block.
In order to constrain the formation time of high-grade metamorphic rocks in the Qilian Mountains, U-Pb zircon dating was carried out by using LA-ICPMS technique for a paragneiss of the Hualong Group in the Qilian Mountains basement series and a weakly foliated granite that intruds into the Hualong Group. Zircons from the paragneiss consist dominantly of detrital magma zircons with round or sub-round shape. They have 207Pb/206Pb ages mostly ranging from 880 to 900 Ma, with a weighted mean age of 891 ±9 Ma, which is interpreted as the magma crystallization age of its igneous provenance and can be taken as a lower age limit for the Hualong Group. Magma crystallization age for the weak-foliated granite is 875±8 Ma, which can be taken as an upper age limit for the Hualong Group. Accordingly, the formation time of the Hualong Group is constrained at sometime between 875 and 891 Ma. A few zir- cons from both paragneiss and weak-foliated granite display old inherited ages of 1000 to 1700 Ma and young metamorphic ages of Early Paleozoic. The zircon age distribution pattern confirms that the Qilian Mountains and the northern margin of Qaidam Basin had a united basement, with geotectonic affinity to the Yangtze Block. The results also reveal that sediments of the Hualong Group formed by rapid accumulation due to rapid crustal uplift-erosion. This process may result from intensive Neoproterozoic orogenesis due to assembly of the suppercontinent Rodinia.
This paper reports geochemical and Pb-Sr-Nd isotopic compositions of the Indosinian Yangba (215 Ma),Nanyili (225 Ma) and Mopi granitoids from the Bikou block of the northwestern margin of the Yangtze plate. These granitoids are enriched in Al (Al2O3:14.56%―16.48%) and Sr (352 μg/g―1047 μg/g),and depleted in Y (<16 μg/g) and HREE (e.g. Yb<1.61 μg/g),resulting in high Sr/Y (36.3―150) and (La/Yb)N (7.8―36.3) ratios and strongly fractionationed REE patterns. The Indosinian granotoids show initial Sr isotopic ratios (ISr) from 0.70419 to 70752,εNd(t) values from-3.1 to -8.5,and initial Pb isotopic ratios 206Pb/204Pb=17.891-18.250,207Pb/204Pb=15.494-15.575,and 208Pb/204Pb=37.788-38.335. Their geochemi-cal signatures indicate that the granitoids are adakitic. However,they are distinct from some adakites,generated by partial melting of subducted oceanic slab and/or underplated basaltic lower crust,be-cause they have high K (K2O: 1.49%―3.84%) and evolved Nd isotopic compositions,with older Nd iso-topic model ages (TDM=1.06―1.83 Ga). Geochemical and Sr-Nd isotopic compositions suggest that the magmas of the Insoninian adakitic rocks in the Bikou block were derived from partial melting of thick-ened basaltic lower crust. Combined with regional analyses,a lithospheric delamination model after collision between the North China and South China plates can account for the Indosinian adakitic magma generation. On the other hand,based on the Pb-Sr-Nd isotopic probing to the magma sources of the adakitic rocks,it is suggested that there is an unexposed continent-type basement under the exposed Bikou Group volcanic rocks. This can constrain on the Bikou Group volcanic rocks not to be MORB-or OIB-type.