Let u be a solution to a second order elliptic equation with singular potentials belonging to Kato-Fefferman-Phong's class in Lipschitz domains. An elementary proof of the doubling property for u^2 over balls is presented, if the balls are contained in the domain or centered at some points near an open subset of the boundary on which the solution u vanishes continuously. Moreover, we prove the inner unique continuation theorems and the boundary unique continuation theorems for the elliptic equations, and we derive the Bp weight properties for the solution u near the boundary.
. In this paper,the characterization of boundedness of Hardy-Littlewood maximal operators in Orlicz-Morrey spaces LΦφ(X,μ) of homogeneous type is founded.