您的位置: 专家智库 > >

国家自然科学基金(102055)

作品数:5 被引量:17H指数:1
相关作者:郝建修更多>>
相关机构:浙江师范大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学自然科学总论更多>>

文献类型

  • 5篇中文期刊文章

领域

  • 3篇理学
  • 2篇自然科学总论

主题

  • 3篇GRAPHS
  • 2篇英文
  • 2篇THIRD
  • 2篇EDGE-C...
  • 2篇标号
  • 1篇PROBLE...
  • 1篇UPPER
  • 1篇UPPER_...
  • 1篇WIDTH
  • 1篇BOUND
  • 1篇CUT
  • 1篇GRAPH
  • 1篇SUPERI...
  • 1篇MAXIMA...
  • 1篇EXTREM...

机构

  • 2篇浙江师范大学

作者

  • 2篇郝建修

传媒

  • 2篇河南科学
  • 2篇Scienc...
  • 1篇Chines...

年份

  • 1篇2008
  • 1篇2007
  • 2篇2006
  • 1篇2005
5 条 记 录,以下是 1-5
排序方式:
Upper bound of the third edge-connectivity of graphs被引量:16
2005年
Let G be a simple connected graph of order n ≥ 6. The third edge-connectivity of G is defined as the minimum cardinality over all the sets of edges, if any, whose deletion disconnects G and every component of the resulting graph has at least 3 vertices. In this paper, we first characterize those graphs whose third-edge connectivity is well defined,then establish the tight upper bound for the third edge-connectivity.
WANG Yingqian LI Qiao
关键词:THIRDUPPER
侧廓问题的运算(英文)
2008年
侧廓问题是:寻找一个从V(G)到正整数集合{1,2,…,│V(G)│}的一个一一对应,使Σ x∈V(G)(f(x)-min y∈N*(x)f(y))尽可能小,这里y∈N(*x),N(*x)是x的闭邻域.本文我们研究侧廓问题的一个运算.
郝建修
关键词:标号
图的侧廓问题的一些界(英文)被引量:1
2007年
侧廓问题是:寻找一个从V(G)到正整数集合{1,2,…,│V(G)│}的一个一一对应,让x∈V(G)∑ (f(x)-min f(y)尽可能小,这里y∈N*(x),N*(x)是x的闭领域.本文提供这个问题的两个结果.
郝建修
关键词:标号
Optimization problems of the third edge-connectivity of graphs被引量:1
2006年
The third edge-connectivity λ3(G) of a graph G is defined as the minimum cardinality over all sets of edges, if any, whose deletion disconnects G and each component of the resulting graph has at least 3 vertices. An upper bound has been established for λ3(G) whenever λ3(G) is well-defined. This paper first introduces two combinatorial optimization concepts, that is, maximality and superiority, of λ3(G), and then proves the Ore type sufficient conditions for G to be maximally and super third edge-connected. These concepts and results are useful in network reliability analysis.
WANG Yingqian
关键词:THIRD
Extremal Cut-width Problem for Graphs
2006年
The problem studied in this paper is to determine e(p, C), the minimum size of a connected graph G with given vertex number p and cut-width C.
HAO Jian-xiuYANG Ai-feng
共1页<1>
聚类工具0