Using the properties of chaos synchronization, the method for estimating the largest Lyapunov exponent in a multibody system with dry friction is presented in this paper. The Lagrange equations with multipliers of the systems are given in matrix form, which is adequate for numerical calculation. The approach for calculating the generalized velocity and acceleration of the slider is given to determine slipping or sticking of the slider in the systems. For slip-slip and stick-slip multibody systems, their largest Lyapunov exponents are calculated to characterize their dynamics.
利用Leggett-Williams不动点定理,并赋予f,g一定的增长条件,证明了二阶多点微分方程组边值问题u″+f(t,u,v)=0,v″+g(t,u,v)=0,0 t 1,u(0)=v(0)=0,u(1)-∑n-2i=1kiu(ξi)=0,v(1)-∑m-2i=1liv(ηi)=0,至少存在三对正解,其中f,g:[0,1]×[0,∞)×[0,∞)→[0,∞)是连续的.