基于RANS方程和VOF模型求解船体粘性兴波流场,开展了小水线面双体船(Small Waterplane Area Twin Hulls,SWATH)迎浪规则波中纵向运动及波浪载荷的非线性特性研究。通过数值计算结果与模型试验结果的对比分析,验证了文中方法的有效性;在此基础上,较为系统地分析了SWATH船的垂荡及纵摇运动响应、垂向加速度和波浪载荷的一阶及二阶量随入射波高的变化规律,指出SWATH船的运动响应及载荷与波高存在非线性的关系,尤其体现在响应共振区附近;相比于船体垂荡和纵摇运动,垂向加速度及波浪载荷的非线性特性更为显著。
The singularities and oscillatory performance of translating-pulsating source Green's function in Bessho form were analyzed. Relative numerical integration methods such as Gaussian quadrature rule, variable substitution method (VSM), and steepest descent integration method (SDIM) were used to evaluate this type of Green's function. For SDIM, the complex domain was restricted only on the 0-plane. Meanwhile, the integral along the real axis was computed by use of the VSM to avoid the complication of a numerical search of the steepest descent line. Furthermore, the steepest descent line was represented by the B-spline function. Based on this representation, a new self-compatible integration method corresponding to parametric t was established. The numerical method was validated through comparison with other existing results, and was shown to be efficient and reliable in the calculation of the velocity potentials for the 3D seakeeping and hydrodynamic performance of floating struc- tures moving in waves.