In this study, the upper ocean heat content (OHC) variations in the South China Sea (SCS) during 1993- 2006 were investigated by examining ocean temperatures in seven datasets, including World Ocean Atlas 2009 (WOA09) (climatology), Ishii datasets, Ocean General Circulation ModeI for the Earth Simulator (OFES), Simple Ocean Data Assimilation system (SODA), Global Ocean Data Assimilation System (GODAS), China Oceanic ReAnalysis system (CORA) , and an ocean reanalysis dataset for the joining area of Asia and Indian-Pacific Ocean (AIPO1.0). Among these datasets, two were independent of any numerical model, four relied on data assimilation, and one was generated without any data assimilation. The annual cycles revealed by the seven datasets were similar, but the interannual variations were different. Vertical structures of temperatures along the 18~N, 12.75~N, and 120~E sections were compared with data collected during open cruises in 1998 and 2005-08. The results indicated that Ishii, OFES, CORA, and AIPO1.0 were more consistent with the observations. Through systematic shortcomings and advantages in presenting the upper comparisons, we found that each dataset had its own OHC in the SCS.
The present study investigates the role of Kelvin wave propagations along the equatorial Indian Ocean during the 2006-2008 Indian Ocean Dipole(IOD).The 2006 IOD lasted for seven months,developing in May and reaching its peak in December,while the 2007 and 2008 IODs were short-lived events,beginning in early May and ending abruptly in September,with much weaker amplitudes.Associated with the above IODs,the impulses of the sea surface height(SSH) anomalies reflect the forcing from an intraseasonal time scale,which was important to the evolution of IODs in 2007 and 2008.At the thermocline depth,dominated by the propagation of Kelvin waves,the warming/cooling temperature signals could reach the surface at a particular time.When the force is strong and the local thermocline condition is favorable,the incoming Kelvin waves dramatically impact the sea surface temperature(SST) in the eastern equatorial Indian Ocean.In July 2007 and late July 2008,the downwelling Kelvin waves,triggered by the Madden-Julian Oscillation(MJO) in the eastern and central equatorial Indian Ocean,suppressed the thermocline in the Sumatra and the Java coast and terminated the IOD,which made those events short-lived and no longer persist into the boreal fall season as the canonical IOD does.
This study investigates the surface circulation in the Indian Ocean using Argos float data over the period 1979-2011.The Argos observations manifest some new phenomena.The climatological annual mean circulation shows that the surface current becomes much stronger after turning around in shore in the western Indian Ocean.In the tropical Indian Ocean,the Great Whirl(GW) to the east of Somalia develops quickly in spring(April-May) as the monsoon reverses to move northward,becoming strongest in summer(June-September) and disappearing in autumn(October-November).The west end of the Agulhas retroflection can reach 18°E,and it exhibits a seasonal variation.At approximately 90°E,the Agulhas Return Current combines with the eastward South Atlantic Current and finally joins the Antarctic Circumpolar Current.
ZHENG Shao-JunZHANG Yu-HongZHUANG WeiLI Jia-XunDU Yan