A preliminary model is proposed to describe quantitatively the position and movement of cusp equatorward boundary. This integrated model, consisting of an empirical model of the magnetopause and a compressed dipolar model of Open/Closed field line, connects quantitatively the solar wind conditions, subsolar magnetopause and cusp equatorward boundary. It is shown that the increasing solar wind dynamic pressure and the increasing southward Interplanetary Magnetic Field (IMF) component drive the magnetopause to move inward and the cusp equatorward. This model is adopted to interpret quantitatively the cusp movement of August 14, 2001 observed by Cluster. The results show that the subsolar magnetopause moved earthward from 10.7 Re to 9.0Re during the period of 002300-002800 UT, and correspondingly the cusp equatorward boundary shifted equatorward. The observations of Cluster C1 and C4 show the cusp equatorward boundary that Cluster C1 and C4 were crossing during same interval moved equatorward by 4.6°. The cusp equatorward boundary velocity computed in the theoretical model (10.7 km/s) is in good agreement with the observed value(9.4km/s) calculated from the data of CIS of Cluster C4 and C1.
J. B. CaoA. LeonovichG. C. ZhouZ. X. LiuH. RemeI. Dandouras
Their brief report presents the advances of the magnetospheric physics researches in China during the period of 2004-2006. During the past two years, China-ESA cooperation DSP (Double Star Program) satellites were successively launched. In addition, China also participated in the scientific research of ESA's Cluster mission. The DSP and Cluster missions provide Chinese space physicists high quality data to study multiscale physical process in the magnetosphere. The work made based on the data of DSP is presented in the paper of "Progress of Double Star Program" of this issue.