Background Epithelial dysfunction in lungs plays a key role in the pathogenesis of acute lung injury. The beneficial effects of low potassium dextran glucose solution (LPD) have been reported in lung preservation, and LPD enables injured alveolar pneumocytes to recover. So we hypothesized that systemic administration of LPD may have benefits in treating acute lung injury. We investigated the effects of LPD on arterial blood gas and levels of some cytokines in oleic acid-induced acute lung injury in juvenile piglets.Methods Oleic acid (0.1 ml/kg) was intrapulmonarily administered to healthy anesthetized juvenile piglets. Ten animals were randomly assigned to two groups (n=5 each): oleic acid-induced group (control group) with intravenous infusion of 12.5 ml/kg of lactated Ringer's solution 30 minutes before administration of oleic acid and LPD group with systemic administration of LPD (12.5 ml/kg) 30 minutes before injecting oleic acid. Blood gas variables and concentrations of tumor necrosis factor alpha, endothelin 1 and interleukin 10 were measured before and every 1 hour for 6 hours after initial lung injury.Results Compared with control group, blood pH, partial pressure of arterial oxygen to fraction of inspired oxygen ratio,partial pressure of arterial carbon dioxide, and mean pulmonary arterial pressure in LPD group were improved (P<0.05or 0.01). Six hours after lung injury, concentration of tumor necrosis factor alpha in lung tissue was lower in LPD group than control group (P<0.05). Plasmic concentration of endothelin 1 showed lower in LPD group while plasmic concentration of interleukin 10 showed higher in LPD group (P<0.05).Conclusions Before lung injury, systemic administration of LPD can improve gas exchange, attenuate pulmonary hypertension, decrease plasmic levels of endothelin 1, increase interleukin 10 and decrease concentration of tumor necrosis factor alpha in lung tissue in oleic acid-induced acute lung injury in juvenile piglets.
LING Feng LIU Ying-long LIU Ai-jun WANG Dong WANG Qiang
Background Pediatric patients are susceptible to lung injury that does not respond to traditional therapies.Partial liquid ventilation (PLV) has been developed as an alternative ventilatory strategy for treating severe lung injury.The aim of this study is to investigate the effect of PLV on lung function in immature piglets.Methods Acute lung injury was induced in 12 Chinese immature piglets by oleic acid (OA).The animals were randomly assigned to two groups (n=6 each group):(1) conventional mechanical ventilation (MV) group and (2) PLV with FC-77 (10 ml/kg) group.Mean arterial blood pressure (MAP),mean pulmonary arterial pressure (MPAP),central venous pressure (CVP),left atrial pressure (LAP),systemic vascular resistance (SVR),pulmonary vascular resistance (PVR),cardiac output (CO),mean pressure of airway (Paw),dynamic lung compliance (Cydn),and arterial blood gases were measured during the observation period.Results No piglet died in either group with severe lung injury.After four hours of ventilation,pH in the MV group gradually decreased to lower than 7.20,while in the PLV group,pH also gradually decreased but remained higher than 7.20 (P <0.05).Partial pressure of oxygen in artery (PaO2) decreased in both groups,but with a significant difference between the PLV group and MV group (P <0.05).Partial pressure of carbon dioxide in artery (PaCO2) increased in both groups,but with a significant difference between the PLV group and MV group (P <0.05).Paw increased in both groups,but was not significantly different (P >0.05).Cydn decreased in both groups,but without a significant difference (P >0.05).At four hours,heart rate (HR) and MAP in both groups decreased.MPAP in both groups increased,and there was a significant difference between the two groups (P <0.05).CVP was stable in both groups.At four hours,PVR and LAP were increased in both groups.CO was decreased in both groups (P <0.05).SVR was st
Background Young children are susceptible to pulmonary injury, and acute lung injury (ALl) often results in a high mortality and financial costs in pediatric patients. A good ALl model will help us to gain a better understanding of the real pathophysiological picture and to evaluate novel treatment approaches to acute respiratory distress syndrome (ARDS) more accurately and liberally. This study aimed to establish a hemodynamically stable and reproducible model with ALl in piglet induced by oleic acid. Methods Six Chinese mini-piglets were used to establish ALl models by oleic acid. Hemodynamic and pulmonary function data were measured. Histopathological assessment was performed. Results Mean blood pressure, heart rate (HR), cardiac output (CO), central venous pressure (CVP) and left atrial pressure (LAP) were sharply decreased after oleic acid given, while the mean pulmonary arterial pressure (MPAP) was increased in comparison with baseline (P 〈0.05). pH, arterial partial pressure of 02 (PaO2), PaO2/inspired 02 fraction (FiO2) and lung compliance decreased, while PaCO2 and airway pressure increased in comparison with baseline (P 〈0.05). The lung histology showed severe inflammation, hyaline membranes, intra-alveolar and interstitial hemorrhage. Conclusion This experiment established a stable model which allows for a diversity of studies on early lung injury.