A novel composite coating was fabricated on AZ91 magnesium alloy by applying a composite surface treatment which combined the methods of plasma electrolytic oxidation(PEO)pre-treatment,electroless copper and benzotriazole(BTA)passivation. The cross-section microstructures and chemical compositions of coating were examined using scanning electron microscopy(SEM) equipped with energy dispersive analysis of X-rays(EDX).Potentiodynamic polarization curves and salt spray tests were employed to evaluate corrosion protection of the coating to substrate in 5%NaCl solution.It is indicated that electroless copper produces a rough interface between the electroless copper layer and the ceramic layer.The corrosion potential shifts to the positive direction significantly and the current density decreases by more than one order of magnitude.There is no visible galvanic corrosion pits on the surface of the composite coating combination of PEO and electroless copper after 168 h neutral salt spray testing.The color of copper after BTA immersion could be held more than 60 d.
The oxalate coating formed on AZ91D magnesium alloy by chemical conversion treatment methods in oxalate salt solutions was investigated.The surface morphologies and chemical composition of coating were examined using scanning electron microscopy(SEM)equipped with energy dispersive analysis of X-ray(EDX).Electrochemical impedance spectroscopy(EIS), potentiodynamic polarization curves and salt spray tests were employed to evaluate corrosion protection of the coating to substrate in 5%NaCl solution.The mechanism of coating formations was also considered in details.The results indicate that a compact and dense surface morphology with fine particle clusters of the oxalate coating on magnesium alloy is presented,which mainly consists of oxide or/and organic of Mg,Al and Zn.And the anti-corrosion of the magnesium after oxalate conversion treatment is better than that of the magnesium substrate.The results of salt spray test for oxalate coating is evaluated as Grade 9 according to ASTM B117. The electric resistance of oxalate chemical conversion coating to substrate is below 0.1Ω.