The historical data of phytoplankton and chlorophyll a(Chl a)(1990–2002)obtained during the Chinese National Antarctic Research Expedition(CHINARE)in the Prydz Bay have been integrated.The results showed that the temperature,salinity,nutrients,and oxygen of seawater changed when El Nino/La Nina occurred.The variation of biological communities reflected the response of ecosystem to environmental changes.During El Ni?o period,Chl a concentration and phytoplankton community structure changed significantly,and the relative proportion of diatoms increased while dinoflagellates decreased.During La Ni?a period,the proportion of diatoms decreased,but the golden-brown algae and blue-green algae increased significantly.The variation of phytoplankton population directly affected the biodiversity of the bay,which were also quite sensitive to the marine environment changes.Meanwhile,the satellite remote sensing data of 2002–2011(December–March)have been used to study the temporal connection change of Chl a and phytoplankton in the Prydz Bay.We found that there were significant differences in the monthly variation characteristics of satellite remote sensing Chl a and sea surface temperature(SST),which had some links with sea ice melting and El Ni?o/La Ni?a events.We found that the start time of bloom advanced,lagged or synchronized with the changes of the SST,and we also found the occurrence time of phytoplankton bloom corresponded with the sea ice melting inner bay.To some extent,this study will help us understand the relationships between ENSO events and the phytoplankton bloom in the Southern Ocean.
The study provides one of the first lines of evidence showing linkages between Antarctic phytoplankton abundance and composition in response to ENSO, based on historical reconstruction of sediment biomarkers. In addition to sediment biomarkers, field measured and remote sensing data of phytoplankton abundance were also recorded from Prydz Bay, Eastern Antarctica. Com-munity structure of field measured phytoplankton showed significant El Ni?o/La Ni?a-related succession during 1990 to 2002. In general, the number of algae species decreased during El Ni?o and La Ni?a years compared to normal years. Austral summer monthly variation of remotely sensed chlorophyll-a (Chl-a), particulate organic carbon (POC), and sea surface temperature (SST) indicated that ENSO impacted the timing of phytoplankton blooms during 2007 to 2011. Phytoplankton blooms (indicated by Chl-a and POC) preceded the increases in SST during El Ni?o years, and lagged behind the SST increases during La Ni?a years. Stratigraphic record of marine sedimentary lipid (brassicasterol, dinosterol and alkenones) biomarkers inferred that the proportions of different algae (diatoms, dinoflagellates and haptophytes) changed significantly between El Ni?o and La Ni?a events. The relative proportion of diatoms increased, with that of dinoflagellates being decreased during El Ni?o years, while it was reversed during La Ni?a years.