n(n≥2)条长为2的路具有两个共同的端点的二分图记为A(n)=(X,Y,E),其中X为2n度顶点集合,Y为2度顶点集合,记X={u1,u2},y=v0,v1,…,vn-1,A(nj)=(Xj,Yj,Ej)(nj≥2)中的Xj={uj1,uj2},Yj={vj1,vj2,…,vjnj-1}(j=1,2,…,m),用一条边连接vjnj-1与uj2+1(j=1,2,…,m-1)得到的图记为∧from j=1 to m A(nj).图∪from i=1 to n ∧from j=1 to m_i A(n_j)是n个∧from j=1 to m_i的不交并.本文证明了∪from i=1 to n ∧from j=1 to m_i A(n_j)是优美的且是交错的.