To improve the magneto-rheological (MR) properties of magneto-rheological fluids, self-made amorphous alloy particles, the composition of which was Fe76Cr2Mo2Sn2P10B2C2Si4, were used as the disperse phase to replace traditional carbonyl iron (CI) particles to prepare amorphous based magneto-rheological fluid (AMRF). Soft magnetic properties and densities of the amorphous particles and the CI particles were tested and compared. The results indicate the amorphous particles present a lower density but larger magnetization intensity and larger permeability at lower field levels. Properties of the AMRF with 20% particles in volume fraction were tested and compared with the CI based MR fluid (CMRF). The AMRF presents a saturation yield stress of 41 kPa at ~227 kA/m and a sedimentation ratio of 80%. The results indicate the magneto-rheological fluid based on amorphous micro-particles has better MR properties and sedimentation stability than that based on CI particles at lower field levels (0-200 kA/m).
采用溶剂热法制备出花状微米颗粒。采用SEM,TEM,XRD,FT-IR 等方法分析颗粒形貌及成分。结果表明,花状颗粒为丙三醇基化合物,其表观直径在2~3μm 之间,表面由次级的刺状结构组成。分别以花状微米颗粒和光滑球状 TiO 2颗粒为分散相制备电流变液,并测试其电流变性能和沉降稳定性。实验结果表明,在相同电场强度下,花状颗粒电流变液的剪切屈服强度明显高于光滑球状颗粒电流变液,但漏电流密度远小于光滑球状颗粒电流变液;静置12d,花状颗粒电流变液的抗沉降率较之光滑球状颗粒电流变液有显著提高。花状颗粒特有的形貌是其具有优异电流变性能和沉降稳定性的主要原因。