通过运用带宽非参数方法、AR-GARCH模型对时间序列的条件均值、条件波动性进行建模估计出标准残差序列,再运用L-Moment与MLE(maximum Likelihood estimation)估计标准残差的尾部的GPD参数,进而运用实验方法测度出风险VaR(value at Risk)及ES(ExpectedShortfall),最后运用Back-Testing方法检验测度准确性。结果表明,基于带宽的非参数估计模型比GARCH簇模型在测度ES上具有更高的可靠性;基于非参数模型与L-Moment的风险测度模型能够有效测度沪深股市的动态VaR与ES。