We present a scheme to simulate SH-wave propagation in a whole-Earth model with arbitrary lateral heterogeneities employing the Fourier pseudospectral method. Wave equations are defined in two-dimensional cylindrical coordinates and the model is taken through a great circle of the Earth. Spatial derivatives in the wave equations are calculated in the wavenumber domain by multiplication, and the transformation between spatial and wavenumber domains is performed via fast Fourier transformation. Because of the high accuracy and high speed of the Fourier pseudospectral method, the scheme enables us to calculate a short-wavelength global SH-wavefield with accurate waveforms and arrival times for models with heterogeneities that can be approximated as azimuthally symmetric. Comparing with two-dimensional simulation methods based on an axisymmetric model, implementing the seismic source in the present scheme is more convenient. We calculated the global SH-wavefield for the preliminary reference Earth model to identify the generation, reflection and refraction of various seismic phases propagating in the Earth. Applications to a heterogeneous global model with low-velocity perturbation above the core-mantle boundary were conducted to analyze the effect of lateral heterogeneity on global SH-wave propagation.
Pseudospectral method is an efficient and high accuracy numerical method for simulating seismic wave propaga- tion in heterogeneous earth medium. Since its derivative operator is global, this method is commonly considered not suitable for parallel computation. In this paper, we introduce the parallel overlap domain decomposition scheme and give a parallel pseudospectral method implemented on distributed memory PC cluster system for modeling seismic wave propagation in heterogeneous medium. In this parallel method, the medium is decomposed into several subdomains and the wave equations are solved in each subdomain simultaneously. The solutions in each subdomain are connected through the transferring at the overlapped region. Using 2D models, we compared the parallel and traditional pseudospectral method, analyzed the accuracy of the parallel method. The results show that the parallel method can efficiently reduce computation time for the same accuracy as the traditional method. This method could be applied to large scale modeling of seismic wave propagation in 3D heterogeneous medium.