Site-directed mutagenesis (SDM) has been a very important method to probe the function-structure relationship of proteins. In this study, we introduced an easy-to-use, polymerase chain reaction (PCR)-based SDM method for double-stranded plasmid DNA, with a designed restriction site to ensure simple and efficient mutant screening. The DNA sequence to be mutated was first translated into amino acid sequence and then the amino acid sequence was reversely translated into DNA sequence with degenerate codons, resulting in a large number of sequences with silent mutations, which contained various restriction endonu-clease (RE) sites. Certain mutated sequence with an appropriate RE site was selected as the target DNA sequence for designing a pair of mutation primers to amplify the full-length plasmid via inverse PCR. The amplified product was 5′-phosphorylated, cir-cularized, and transformed into an Escherichia coli host. The transformants were screened by digesting with the designed RE. This protocol uses only one pair of primers and only one PCR is conducted, without the need for hybridization with hazardous isotope for mutant screening or subcloning step.
Although previous publications suggest the 2009 pandemic influenza A (H1N1) virus was reassorted from swine viruses of North America and Eurasia,the immediate ancestry still remains elusive due to the big evolutionary distance between the 2009 H1N1 virus and the previously isolated strains. Since the unveiling of the 2009 H1N1 influenza,great deal of interest has been drawn to influenza,consequently a large number of influenza virus sequences have been deposited into the public sequence databases. Blast analysis demonstrated that the recently submitted 2007 South Dakota avian influenza virus strains and other North American avian strains contained genetic segments very closely related to the 2009 H1N1 virus,which suggests these avian influenza viruses are very close relatives of the 2009 H1N1 virus. Phylogenetic analyses also indicate that the 2009 H1N1 viruses are associated with both avian and swine influenza viruses circulating in North America. Since the migrating wild birds are preferable to pigs as the carrier to spread the influenza viruses across vast distances,it is very likely that birds played an important role in the inter-continental evolution of the 2009 H1N1 virus. It is essential to understand the evolutionary route of the emerging influenza virus in order to find a way to prevent further emerging cases. This study suggests the close relationship between 2009 pandemic virus and the North America avian viruses and underscores enhanced surveillance of influenza in birds for understanding the evolution of the 2009 pandemic influenza.
Cun Li Xiao-ping An Zhi-qiang Mi Da-bin Liu Huan-huan Jiang Bo Pan Sheng Wang Bin Chen Yi-gang Tong