We investigate the resistive switching characteristics of a Cu/VOx/W structure. The VOx film is deposited by radio- frequency magnetron sputtering on the Cu electrode as a dielectric layer. The prepared VOx sample structure shows reproducible bipolar resistive switching characteristics with ultra-low switching voltage and good cycling endurance. A modified physical model is proposed to elucidate the typical switching behavior of the vanadium oxide-based resistive switching memory with a sudden resistance transition, and the self-saturation of reset current as a function of compliance current is observed in the test, which is attributed to the conducting mechanism is discussed in detail. growth pattern of the conducting filaments. Additionally, the related
Flexible TiO2 memory devices are fabricated on a plastic substrate at room temperature. The metal-insulator-metal (MIM) structure is grown on polyimide (PI). Several metals with different ductilities, such as Al, W, Cu and Ag, are selected as electrode. The test results show that the samples have stable resistive switching behaviors, and the electric characteristics can stay stable even after the radius of substrate is bent up to 10 mm. After 103 times of substrate bend-ing, the memory cells with W as bottom electrode on PI still show stable resistive switching characteristics and low switching voltages. The set voltage and reset voltage can be as low as 0.9 V and 0.3 V, respectively.