Periodicity of Retzius lines is a key factor in dental development. In this study, we examined the periodicity of Retzius lines in fossil Pongo from South China using polarized light microscope observation of dental ground sections. The periodicities all of the 15 teeth were 9 d. Comparisons of periodicity were made with extant primates, fossil apes and hominins. Periodicity of fossil Pongo from South China was relatively long but fell within the variation of extant Pongo, Gorilla and modern human, and longer than periodicity of Pan and other extant primates. Fossil Pongo from South China was similar to Lufengpithecus and Sivapithecus, shorter than Gigantopithecus and longer than European and African fossil apes and most early hominins in periodicity. Generally, the periodicities of Asian large-body fossil apes were longer than the periodicities of European and African large-body fossil apes in Miocene. Difference among species and trend of evolution in periodicity were analyzed and discussed. We found that periodicity might gradually increase from Proconsul in early Miocene to several fossil apes in Miocene and then Gigantopithecus in Pleistocene. In addition, this study made correlate analysis between periodicity and body mass respectively in males and females of six extant apes and five fossil apes, and found that periodicity positively correlated with body mass.
HU Rong1,2,3, ZHAO LingXia1,2 & WU XinZhi2 1 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
Enamel stable carbon isotope analyses were conducted on the large fossil ape Gigantopithecus blacki and an associated mammalian megafauna from Longgudong Cave in Jianshi and Juyuandong Cave in Liucheng, South China. The range in δ13C values (-18.8‰ to -14.1‰) indicates that G. blacki and other large mammals fed on solely C3 biomass, and lived in forest habitats, and not open country or savannas. These results are consistent with other faunal and floral analyses for that time. The diet and habitat of G. blacki were significantly different from those of early hominins (Australopithecus and Paranthropus) from South and East Africa. Extinction of G. blacki probably was a result of forest habitat fragmentation and deterioration.