As a conventional farming practice, tillage has lasted for thousands of years in Loess Plateau, China. Although recent studies show that tillage is a prominent culprit to soil carbon loss in croplands, few studies have investigated the influences of tillage on the responses of soil CO2 efflux (SCE) to soil temperature and moisture. Using a multi-channel automated CO2 efflux chamber system, we measured SCE in situ continuously before and after the conventional tillage in a rain fed wheat field of Loess Plateau, China. The changes in soil temperature and moisture sensitivities of SCE, denoted by the Q10 value and linear regression slope respectively, were compared in the same range of soil temperature and moisture before and after the tillage. The results showed that, after the tillage, SCE increased by 1.2-2.2 times; the soil temperature sensitivity increased by 36.1%-37.5%; and the soil moisture sensitivity increased by 140%-166%. Thus, the tillage-induced increase in SCE might partially be attributed to the increases in temperature and moisture sensitivity of SCE.
通过收集、整合国内相关数据,推算了符合中国目前情况的各种氮肥、磷肥和钾肥的制造过程中的温室气体排放系数(从原料到工厂大门)。结果显示,我国平均水平的氮肥制造碳排放系数为:合成氨(液氨)1.672 t CE/t N,尿素2.041 t CE/t N,碳铵1.928 t CE/t N,硝酸铵4.202 t CE/t N,氯化铵2.220 t CE/t N,氮肥综合系数为2.116 t CE/t N。我国一般水平的磷肥制造碳排放系数为:重钙0.467 t CE/t P2O5,磷酸二铵1.109 t CE/t P2O5,磷酸一铵0.740 t CE/t P2O5,普钙0.195 t CE/t P2O5,钙镁磷肥2.105 t CE/t P2O5,磷肥综合系数为0.636 t CE/t P2O5。我国先进水平的钾肥制造碳排放系数为:氯化钾0.168 t CE/t K2O,硫酸钾0.409 t CE/t K2O(其中罗钾法硫酸钾0.443 t CE/t K2O、曼海姆法硫酸钾0.375 t CE/t K2O),钾肥综合系数为0.180 t CE/t K2O。我国大部分氮磷钾肥的温室气体排放系数普遍为欧美平均水平的2倍左右,因此利用国外系数来估算我国的农业温室气体排放量将严重低估化肥施用的影响。