In this paper, by combining the second order characteristics time discretization with the variational multiscale finite element method in space we get a second order modified characteristics variational multiscale finite element method for the time dependent Navier- Stokes problem. The theoretical analysis shows that the proposed method has a good convergence property. To show the efficiency of the proposed finite element method, we first present some numerical results for analytical solution problems. We then give some numerical results for the lid-driven cavity flow with Re = 5000, 7500 and 10000. We present the numerical results as the time are sufficient long, so that the steady state numerical solutions can be obtained.
A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements for the stationary Navier-Stokes equa- tions. The existence and uniqueness of the solution and the optimal error estimates are proved.
In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nieolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank- Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the efficient performance of the proposed scheme.
This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and the Crouzeix-Raviart (CR) element combined with the P0 element in space are used. The result shows that this scheme has good stabilities and error estimates independent of the viscosity coefficient.
This paper considers Stokes and Newton iterations to solve stationary Navier- Stokes equations based on the finite element discretization. We obtain new sufficient conditions of stability and convergence for the two iterations. Specifically, when 0 〈 σ =N||f||-1/v2≤1/√2+1 , the Stokes iteration is stable and convergent, where N is defined in the paper. When 0 〈 σ ≤5/11, the Newton iteration is stable and convergent. This work gives a more accurate admissible range of data for stability and convergence of the two schemes, which improves the previous results. A numerical test is given to verify the theory.