您的位置: 专家智库 > >

国家自然科学基金(11271298)

作品数:6 被引量:8H指数:2
相关作者:何银年尚月强更多>>
相关机构:西安交通大学贵州师范大学更多>>
发文基金:国家自然科学基金贵州省科学技术基金更多>>
相关领域:理学更多>>

文献类型

  • 6篇中文期刊文章

领域

  • 6篇理学

主题

  • 3篇NAVIER...
  • 2篇NAVIER...
  • 2篇CONVER...
  • 1篇有限元
  • 1篇可压
  • 1篇可压缩
  • 1篇可压缩流
  • 1篇可压缩流动
  • 1篇NAVIER...
  • 1篇NEWTON
  • 1篇PROJEC...
  • 1篇SCHEME
  • 1篇SECOND...
  • 1篇STOKES
  • 1篇UNIFIE...
  • 1篇CONDIT...
  • 1篇CRANK-...
  • 1篇DEFECT
  • 1篇FINITE...
  • 1篇GRONWA...

机构

  • 1篇贵州师范大学
  • 1篇西安交通大学

作者

  • 1篇尚月强
  • 1篇何银年

传媒

  • 3篇Applie...
  • 1篇Journa...
  • 1篇Acta M...
  • 1篇中国科学:数...

年份

  • 1篇2016
  • 1篇2015
  • 4篇2013
6 条 记 录,以下是 1-6
排序方式:
A SECOND ORDER MODIFIED CHARACTERISTICS VARIATIONAL MULTISCALE FINITE ELEMENT METHOD FOR TIME-DEPENDENT NAVIER-STOKES PROBLEMS
2013年
In this paper, by combining the second order characteristics time discretization with the variational multiscale finite element method in space we get a second order modified characteristics variational multiscale finite element method for the time dependent Navier- Stokes problem. The theoretical analysis shows that the proposed method has a good convergence property. To show the efficiency of the proposed finite element method, we first present some numerical results for analytical solution problems. We then give some numerical results for the lid-driven cavity flow with Re = 5000, 7500 and 10000. We present the numerical results as the time are sufficient long, so that the steady state numerical solutions can be obtained.
Zhiyong SiJian SuYinnian He
不可压缩流动的并行数值方法被引量:5
2013年
不可压缩流动的数值模拟是计算流体力学的重要组成部分.基于有限元离散方法,本文设计了不可压缩Navier-Stokes(N-S)方程支配流的若干并行数值算法.这些并行算法可归为两大类:一类是基于两重网格离散方法,首先在粗网格上求解非线性的N-S方程,然后在细网格的子区域上并行求解线性化的残差方程,以校正粗网格的解;另一类是基于新型完全重叠型区域分解技巧,每台处理器用一局部加密的全局多尺度网格计算所负责子区域的局部有限元解.这些并行算法实现简单,通信需求少,具有良好的并行性能,能获得与标准有限元方法相同收敛阶的有限元解.理论分析和数值试验验证了并行算法的高效性.
尚月强何银年
关键词:不可压缩流动NAVIER-STOKES方程有限元
Unified analysis for stabilized methods of low-order mixed finite elements for stationary Navier-Stokes equations被引量:2
2013年
A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements for the stationary Navier-Stokes equa- tions. The existence and uniqueness of the solution and the optimal error estimates are proved.
陈刚冯民富何银年
CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
2016年
In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nieolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank- Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the efficient performance of the proposed scheme.
冯新龙何银年
Finite difference streamline diffusion method using nonconforming space for incompressible time-dependent Navier-Stokes equations被引量:1
2013年
This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and the Crouzeix-Raviart (CR) element combined with the P0 element in space are used. The result shows that this scheme has good stabilities and error estimates independent of the viscosity coefficient.
陈刚冯民富何银年
New conditions of stability and convergence of Stokes and Newton iterations for Navier-Stokes equations
2015年
This paper considers Stokes and Newton iterations to solve stationary Navier- Stokes equations based on the finite element discretization. We obtain new sufficient conditions of stability and convergence for the two iterations. Specifically, when 0 〈 σ =N||f||-1/v2≤1/√2+1 , the Stokes iteration is stable and convergent, where N is defined in the paper. When 0 〈 σ ≤5/11, the Newton iteration is stable and convergent. This work gives a more accurate admissible range of data for stability and convergence of the two schemes, which improves the previous results. A numerical test is given to verify the theory.
Guodong ZHANGXiaojing DONGYongzheng ANHong LIU
共1页<1>
聚类工具0