Successive sediment suspensions often happen in estuary, yet little research has probed into the difference in the release behaviors of organic compounds among different suspensions. This study took polycyclic aromatic hydrocarbons (PAHs) as typical organic contaminants and investigated the release behaviors between two successive suspensions with a particle entrainment simulator (PES). Results showed that successive sediment suspensions lowered the concentration of dissolved PAHs in the overlying water via facilitating the re-adsorption of dissolved PAHs onto the suspended particles. Fast-release and slow-release periods of PAHs were successively observed in the both suspensions. The concentration changes of dissolved PAHs in the second suspension were generally similar with but hysteretic to those in the first suspension. More vigorous desorption and re-absorp- tion of PAHs were induced in the second suspension. Successive sediment suspensions obviously decreased the concentrations of mineral composition and organic matters in the overlying water, which significantly affects multi- phase distribution of PAHs.
Metal speciation can provide sufficient infor- mation for environmental and geochemical researches. In this study, based on the speciation determination of Cu and Zn in the Yangtze Estuary sediments, roles of eight geochemical controls (i.e., total organic carbon (TOC), clay, Fe/Mn in five chemical fractions and salinity) are fully investigated and sequenced with correlation analysis (CA) and principal components analysis (PCA). Results show that TOC, clay and Fe/Mn oxides are key geochemical factors affecting the chemical speciation distributions of Cu and Zn in sediments, while the role of salinity appears to be more indirect effect. The influencing sequence generally follows the order: TOC 〉 clay 〉 Mn oxides 〉 Fe oxides 〉 salinity. Among the different fractions of Fe/Mn oxides, residual and total Fe content, and exchangeable and carbonate Mn exert the greatest influences, while exchangeable Fe and residual Mn show the poorest influences.
Magnetic Cu^(2+)-chelated silica particles using polyacrylamide as a metal-chelating ligand was developed and used for the immobilization of laccase by coordination.The effect of pH and temperature on the enzymatic property of immobilized laccase and its catalytic capacity for pentachlorophenol(PCP) degradation were evaluated systemically.Compared with free laccase,the immobilized laccase showed improved acid adaptabihty and thermal stability.The immobilized laccase prepared in this work exhibited a good catalytic capacity for PCP removal from aqueous solutions.