Wind speed prediction is of great importance because it affects the efficiency and stability of power systems with a high proportion of wind power.Temporal-spatial wind speed features contain rich information;however,their use to predict wind speed remains one of the most challenging and less studied areas.This paper investigates the problem of predicting wind speeds for multiple sites using temporal and spatial features and proposes a novel two-layer attentionbased long short-term memory(LSTM),termed 2Attn-LSTM,a unified framework of encoder and decoder mechanisms to handle temporal-spatial wind speed data.To eliminate the unevenness of the original wind speed,we initially decompose the preprocessing data into IMF components by variational mode decomposition(VMD).Then,it encodes the spatial features of IMF components at the bottom of the model and decodes the temporal features to obtain each component's predicted value on the second layer.Finally,we obtain the ultimate prediction value after denormalization and superposition.We have performed extensive experiments for short-term predictions on real-world data,demonstrating that 2Attn-LSTM outperforms the four baseline methods.It is worth pointing out that the presented 2Atts-LSTM is a general model suitable for other spatial-temporal features.
Jingcheng QianMingfang ZhuYingnan ZhaoXiangjian He
To improve the classification performance of the kernel minimum squared error( KMSE), an enhanced KMSE algorithm( EKMSE) is proposed. It redefines the regular objective function by introducing a novel class label definition, and the relative class label matrix can be adaptively adjusted to the kernel matrix.Compared with the common methods, the newobjective function can enlarge the distance between different classes, which therefore yields better recognition rates. In addition, an iteration parameter searching technique is adopted to improve the computational efficiency. The extensive experiments on FERET and GT face databases illustrate the feasibility and efficiency of the proposed EKMSE. It outperforms the original MSE, KMSE,some KMSE improvement methods, and even the sparse representation-based techniques in face recognition, such as collaborate representation classification( CRC).
支持向量机回归是一种重要的机器学习算法,虽然已成功应用于多个领域,但针对复杂系统,单输出支持向量回归算法的训练时间过长并且缺乏实用性。多输出直觉模糊最小二乘支持向量回归(Intuitionistic Fuzzy Least Squares Support Vector Regression,IFLS-SVR)在多输出支持向量机的基础上引入了直觉模糊,解决了不确定多输出复杂系统问题,减少了训练时间。生活中复杂的多输出模型更为常见,文中在传统支持向量回归的基础上对其进行改进,提出多输出IFLS-SVR模型。多输出IFLS-SVR采用直觉模糊算法将实际数据转化为模糊数据,将二次规划优化问题转化为求解一系列线性方程组。与现有的模糊支持向量回归相比,多输出IFLS-SVR采用直觉模糊方法来计算隶属度函数,采用最小二乘法提高了算法的训练效率,减少了训练时间,获得了更精确的解。仿真结果表明,与其他方法相比,多输出IFLS-SVR取得了较好的效果。最后将多输出IFLS-SVR模型应用于复杂的风速风向预测,也取得了较好的效果。