This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in-plane grazing incidence x-ray diffraction technique. The results are analysed and compared with a complementary out-of-plane x- ray diffraction technique. The twist of the GaN mosaic structure is determined through the direct grazing incidence t of (100) reflection which agrees well with the result obtained by extrapolation method. The method for directly determining the in-plane lattice parameters of the GaN layers is also presented. Combined with the biaxial strain model, it derives the lattice parameters corresponding to fully relaxed GaN films. The GaN epilayers show an increasing residual compressive stress with increasing layer thickness when the two dimensional growth stage is established, reaching to a maximum level of-0.89 GPa.
High-resolution X-ray diffraction has been employed to investigate the diffuse scattering in a (0001) oriented GaN epitaxial film grown on sapphire substrate. The analysis reveals that defect clusters are present in GaN films and their concentration increases as the density of threading dislocations increases. Meanwhile, the mean radius of these defect clus- ters shows a reverse tendency. This result is explained by the effect of clusters preferentially forming around dislocations, which act as effective sinks for the segregation of point defects. The electric mobility is found to decrease as the cluster concentration increases.
This paper reports that Al1-xInxN epilayers were grown on GaN template by metalorganic chemical vapor deposition with an In content of 7%--20%. X-ray diffraction results indicate that all these Al1-xInxN epilayers have a relatively low density of threading dislocations. Rutherford backscattering/channeling measurements provide the exact compositional information and show that a gradual variation in composition of the Al1-xInxN epilayer happens along the growth direction. The experimental results of optical reflection clearly show the bandgap energies of Al1-xInxN epilayers. A bowing parameter of 6.5~eV is obtained from the compositional dependence of the energy gap. The cathodoluminescence peak energy of the Al1-xInxN epilayer is much lower than its bandgap, indicating a relatively large Stokes shift in the Al1-xInxN sample.
Mg-doped GaN layers prepared by metalorganic chemical vapor deposition were annealed at temperatures between 550 and 950℃. Room temperature (RT) Hall and photoluminescence (PL) spectroscopy measurements were performed on the as-grown and annealed samples. After annealing at 850℃, a high hole concentration of 8 × 10^17 cm^-3 and a resistivity of 0. 8lΩ·cm are obtained. Two dominant defect-related PL emission bands in GaN.. Mg are investigated; the blue band is centered at 2. 8eV (BL) and the ultraviolet emission band is around 3.27eV (UVL). The relative intensity of BL to UVL increases after annealing at 550℃, but decreases when the annealing temperature is raised from 650 to 850℃, and finally increases sharply when the annealing temperature is raised to 950~C. The hole concentration increases with increased Mg doping, and decreases for higher Mg doping concentrations. These results indicate that the difficulties in achieving high hole concentration of 10^18cm^-3 appear to be related not only to hydrogen passivation, but also to self-compensation.
A method to calculate the reflectivity of the coated cavity facet was proposed, and the distribution of the optical power near the two coated cavity facets was calculated for GaN-based laser diodes. A new design method for reducing the optical power at the two cavity facets without changing the output power of laser diodes was discussed, which is helpful to optimize the cavity facet coating and raise the threshold current at which catastrophic optical damage occurs.
This paper reports that a long delay between the beginning of pumping current pulse and the onset of optical pulse is observed in InGaN laser diodes. The delay time decreases as the pumping current increases, and the speed of the delay time reduction becomes slower as the current amplitude increases further. Such delay phenomena are remarkably less serious in laser diodes grown on GaN substrate than those on sapphire. It attributes the delay to the traps which cause a large optical loss by saturable absorption and retard the laser action. The traps can be bleached by capturing injected carriers. The effect of GaAs laser irradiation on InGaN laser action demonstrates that the traps responsible for the delay are deep centres which can be filled by the photo-assisted processes.
Using the finite-element method, the thermal resistances of GaN laser diode devices in a TO 56 package for both epi-up configuration and epi-down configuration are calculated. The effects of various parameters on the thermal characteristics are analysed, and the thicknesses of the AlN submount for both epi-up configuration and epi-down configuration are optimized. The obtained result provides a reference for the parameter selection of the package materials.
对采用MOCVD(metalorganic chemical vapor phase deposition)技术生长在GaN/Sapphire衬底上的InN薄膜进行了Hall、吸收谱以及低温光致发光(photoluminescence,PL)谱的测量和分析.Hall测量发现,样品的载流子浓度分布在1018~1019cm-3.在10K温度下进行PL测量,并对其线形进行分析,得到InN的带隙在0.7eV左右.综合Hall、吸收谱及PL谱的结果发现,吸收边以及PL谱的峰值能量都随载流子浓度的增加而蓝移.此外,我们还讨论了由吸收谱计算InN带隙的存在的不确定性.