Interleukin-2 (IL)-2 signaling plays a pivotal role in the activation of immune responses, and drugs that block this pathway have been shown to be effective for the immunosuppression in patients with organ transplantation to alleviate/eliminate allograft rejection. The first humanized monoclonal antibody (mAb) daclizumab falls into this category and shows high specificity and affinity against a key component of the IL-2 receptor complex, namely IL-2Ra. To reveal the molecular mechanism of the inhibition of the IL-2 signaling pathway by dacllzumab, we determined the crystal structures of the daclizumab Fab in free form and in complex with the IL-2Ra ectodomain at 2.6 and 2.8 A resolution, respectively. The daclizumab Fab adopts a similar conformation in the presence or absence of the IL- 2Ra ectodomain. The antigen-binding site of daclizumab is mainly composed of live complementarity determining regions (CDRs) that form a large positively charged surface depression and two flanking patches that are generally hydrophobic. The conformational epitope consists of several discontinuous segments of the IL-2Ru ectodomain, a large portion of which overlaps with the regions that interact with IL-2, suggesting that the binding of daclizumab to IL-2Ra would prevent the IL-2 binding to IL-2Ra and the subsequent formation of the IL-2fIL-2Ra[~/c complex, and therefore block the IL-2 signaling pathway. These results also have implications for the design and development of improved mAb drugs targeting IL-2Ra.