The novel laminated Ti-TiBw/Ti composites composed of pure Ti layers and TiBw/Ti composite layers have been successfully fabricated by reactive hot pressing. Herein, two-scale structures formed: the pure Ti layer and TiBw/Ti composite layer together constructed a laminated structure at a macro scale. Furthermore, TiBw reinforcement was distributed around Ti particles and then formed a network microstructure in TiBw/Ti composite layer at a micro scale. The laminated Ti-TiBw/Ti composites reveal a superior combination of high strength and high elongation due to two-scale structures compared with the pure Ti, and a further enhancement in ductility compared with the network structured composites. Moreover, the elastic modulus of the laminated composites can be predicted by H-S upper bound, which is consistent with the experimental values.
Further improvement on high temperature durability is one of the most important aims except for high specific strength, high specific stiffness, and excellent wear resistance, to design and fabricate discontinuously reinforced titanium matrix composites (DRTMCs). Their superior properties render them extensive application potential in aerospace and military industries due to the urgent demand for the materials with characteristics of lightweight, high strength, high stiffness and high temperature durability. With development on fabrication methods and room temperature properties, testing, characterizing, evaluating and further increasing high temperature properties of DRTMCs are becoming more and more important to promote their applications. This review provides insights and comprehensions on the high temperature tensile properties, superplastic tensile properties, creep behaviors, and high temperature oxidation behaviors of DRTMCs,