Efforts in realizing all-optical packet switching are overwhelming in the past decade. While optical packet switching remains an attractive switching paradigm in the long run, technical challenges prohibit it from becoming a practical solution for the ever-growing bandwidth hunger during the next few years. Finding a technically viable way to meet the increasing capacity requirement with good scalability and flexibility becomes a clear pursue for the community. Hybrid packet and circuit switching is considered to be one promising technique in realizing high performance switching at low cost and less energy consumption, by taking the advantage of both packet switching and circuit switching. In this paper, we review existing work in hybrid optical packet and circuit switching. We discuss the key technical challenges in realizing hybrid optical packet and circuit switching. We further introduce our ongoing efforts in building a seamlessly transformable packet/circuit-switching node with in a hybrid node, the scheduling complexity with a node running in full packet switching mode. hybrid optical and electronic components. We show that typical scheduling algorithms may be reduced to half of