研究在不完备信息系统(incomplete information system,IIS)中的知识获取已经成为近期粒度计算研究的热点方向之一.为探索一种高效的知识获取方法,基于相容粒度计算的基本原理,针对不完备信息系统的特点,提出了一种完整的知识获取算法.该算法包括不完备信息系统的属性约简算法和系统中对象的约简算法.其主要特点是在由完全覆盖构成的粒度世界中去研究知识的表示和获取问题,其基本粒就是最大相容类.对算法的性能进行了理论和实验分析,证明了算法的有效性和可行性.
The "Binding Problem" is an important problem across many disciplines, including psychology, neuroscience, computational modeling, and even philosophy. In this work, we proposed a novel computational model, Bayesian Linking Field Model, for feature binding in visual perception, by combining the idea of noisy neuron model, Bayesian method, Linking Field Network and competitive mechanism. Simulation Experiments demonstrated that our model perfectly fulfilled the task of feature binding in visual perception and provided us some enlightening idea for future research.
SHI ZhiWei1,2, SHI ZhongZhi1, LIU Xi1,2 & SHI ZhiPing1 1 Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China