Higher-order Korteweg-de Vries (KdV)-modified KdV (mKdV) equations with a higher-degree of nonlinear terms are derived from a simple incompressible non-hydrostatic Boussinesq equation set in atmosphere and are used to investigate gravity waves in atmosphere. By taking advantage of the auxiliary nonlinear ordinary differential equation, periodic wave and solitary wave solutions of the fifth-order KdV-mKdV models with higher-degree nonlinear terms are obtained under some constraint conditions. The analysis shows that the propagation and the periodic structures of gravity waves depend on the properties of the slope of line of constant phase and atmospheric stability. The Jacobi elliptic function wave and solitary wave solutions with slowly varying amplitude are transformed into triangular waves with the abruptly varying amplitude and breaking gravity waves under the effect of atmospheric instability.
The Painleve integrability and exact solutions to a coupled nonlinear Schrodinger (CNLS) equation applied in atmospheric dynamics are discussed. Some parametric restrictions of the CNLS equation are given to pass the Painleve test. Twenty periodic cnoidal wave solutions are obtained by applying the rational expansions of fundamental Jacobi elliptic functions. The exact solutions to the CNLS equation are used to explain the generation and propagation of atmospheric gravity waves.