您的位置: 专家智库 > >

国家自然科学基金(71090401)

作品数:5 被引量:37H指数:3
相关作者:秦进陈琦杨锋梁樑吴华清更多>>
相关机构:中国科学技术大学合肥工业大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:经济管理自动化与计算机技术自然科学总论更多>>

文献类型

  • 5篇期刊文章
  • 1篇会议论文

领域

  • 3篇经济管理
  • 2篇自动化与计算...
  • 1篇自然科学总论

主题

  • 2篇网络零售
  • 2篇零售
  • 2篇顾客
  • 2篇顾客忠诚
  • 2篇TRANSF...
  • 2篇COMMIT...
  • 1篇信任
  • 1篇在线旅游
  • 1篇数据包络
  • 1篇数据包络分析
  • 1篇维度
  • 1篇旅游
  • 1篇供应链
  • 1篇公平
  • 1篇顾客满意
  • 1篇顾客信任
  • 1篇风险分析
  • 1篇服务补救
  • 1篇服务供应链
  • 1篇感知公平

机构

  • 4篇中国科学技术...
  • 1篇合肥工业大学

作者

  • 2篇秦进
  • 1篇夏琼
  • 1篇吴华清
  • 1篇梁樑
  • 1篇杨锋
  • 1篇张璐
  • 1篇赵前前
  • 1篇陈琦

传媒

  • 1篇经济管理
  • 1篇管理科学学报
  • 1篇西北工业大学...
  • 1篇Journa...
  • 1篇Fronti...

年份

  • 1篇2019
  • 2篇2014
  • 3篇2012
5 条 记 录,以下是 1-6
排序方式:
Transfer active learning by querying committee被引量:1
2014年
In real applications of inductive learning for classifi cation, labeled instances are often defi cient, and labeling them by an oracle is often expensive and time-consuming. Active learning on a single task aims to select only informative unlabeled instances for querying to improve the classifi cation accuracy while decreasing the querying cost. However, an inevitable problem in active learning is that the informative measures for selecting queries are commonly based on the initial hypotheses sampled from only a few labeled instances. In such a circumstance, the initial hypotheses are not reliable and may deviate from the true distribution underlying the target task. Consequently, the informative measures will possibly select irrelevant instances. A promising way to compensate this problem is to borrow useful knowledge from other sources with abundant labeled information, which is called transfer learning. However, a signifi cant challenge in transfer learning is how to measure the similarity between the source and the target tasks. One needs to be aware of different distributions or label assignments from unrelated source tasks;otherwise, they will lead to degenerated performance while transferring. Also, how to design an effective strategy to avoid selecting irrelevant samples to query is still an open question. To tackle these issues, we propose a hybrid algorithm for active learning with the help of transfer learning by adopting a divergence measure to alleviate the negative transfer caused by distribution differences. To avoid querying irrelevant instances, we also present an adaptive strategy which could eliminate unnecessary instances in the input space and models in the model space. Extensive experiments on both the synthetic and the real data sets show that the proposed algorithm is able to query fewer instances with a higher accuracy and that it converges faster than the state-of-the-art methods.
Hao SHAOFeng TAORui XU
关键词:CLASSIFICATION
网络零售服务可靠性五维度对顾客忠诚的影响——基于顾客满意与顾客信任的视角被引量:6
2014年
本文研究了网络零售服务可靠性对顾客忠诚的影响机制,包括服务可靠性各维度的直接影响和以顾客满意、信任为中介的间接影响。通过结构方程模型分析得出研究结论:网络零售服务可靠性的五个维度中,产品相符性、信息可靠性和客户服务可靠性对顾客忠诚有直接影响;产品相符性和客户服务可靠性通过顾客满意、顾客信任的完全中介作用间接影响顾客忠诚,信息可靠性通过顾客信任的部分中介影响顾客忠诚。
秦进赵前前
关键词:网络零售顾客忠诚顾客满意顾客信任
网络零售服务补救情形下的顾客忠诚——基于感知公平与感知转移成本视角的研究被引量:17
2012年
本研究在前人理论成果基础上,构建了感知公平(包括结果公平、程序公平、交互公平)、顾客二次满意、感知转移成本与网络顾客忠诚之间关系模型,据此提出一系列研究假设,然后基于问卷调查数据,采用偏最小二乘(PLS)结构方程对假设进行了验证。研究发现,在网络零售服务补救情形下,顾客二次满意、结果公平和感知转移成本均对顾客忠诚有直接正向影响,而程序公平和交互公平则通过二次满意对顾客忠诚产生间接影响;感知转移成本在顾客二次满意与顾客忠诚之间不存在显著调节作用。这些研究结论对于网络商店经营者具有一定管理启示。
秦进陈琦
关键词:网络零售感知公平顾客忠诚
非独立并联生产系统的DEA效率评价研究被引量:10
2012年
对复杂生产系统进行效率评价,是改善其生产效率的基础.针对非独立并联结构生产系统的效率评价问题开展研究.首先,将两阶段非独立并联生产系统等价为先并联后串联结构的混联生产系统;其次,将混联生产系统的整体效率定义为各串联子系统效率的乘积,而各个串联子系统的效率则定义为内部各并联子系统效率的加权和,并给出了对应的DEA效率评价模型;最后,有关定理和算例分析证实了该模型能更合理地评价此类生产系统的技术效率,能够更大程度地挖掘系统整体性能改善的潜力.
夏琼杨锋梁樑吴华清
关键词:数据包络分析并联
在线旅游服务供应链风险分析
在线旅游服务供应链既包含旅游代理和网上支付等线上企业,又包含旅行社、酒店、旅馆、交通运输公司等线下企业。由于在线旅游服务供应链跨行业、跨地域的特征,它比传统的供应链面临更多的风险。随着在线旅游需求的高速增长和游客要求的不...
张璐秦进
关键词:在线旅游供应链
文献传递
Query by diverse committee in transfer active learning被引量:3
2019年
Transfer active learning, which is an emerging learning paradigm, aims to actively select informative instances with the aid of transferred knowledge from related tasks. Recently, several studies have addressed this problem. However, how to handle the distributional differences betwee n the source and target domains remains an open problem. In this paper, a novel transfer active learning algorithm is proposed, inspired by the classical query by committee algorithm. Diverse committee members from both domains are maintained to improve the classification accuracy and a mechanism is included to evaluate each member during the iterations. Extensive experiments on both synthetic and real datasets show that our algorithm performs better and is also more robust than the state-of-the-art methods.
Hao SHAO
关键词:TRANSFERLEARNINGACTIVELEARNINGMACHINELEARNING
共1页<1>
聚类工具0