CeVO4, CeMo0.01V0.99O4 and CeMo0.03V0.97O4 were prepared by co-precipitation method. The addition of molybdenum as promoter shows a positive effect on the catalytic behavior of CeVO4 in oxidative dehydrogenation of propane to propylene. The reduction behaviors of the catalysts were characterized by temperature-programmed reduction. The activation energies of reduction process for the catalysts were obtained at different reduction rates by Kissinger method. The addition of Mo to CeVO4 enhances the selectivity to propylene.
Bao AgulaTiezhen RenXu ZhaoBao ZhaorigetuZhongyong Yuan
Porous hematite (α-Fe2O3) nanorods with the diameter of 20-40 nm and the length of 80-300 nm were synthesized by a simple surfactant-assisted method in the presence of cetyltrimethylammonium bromide (CTAB).The α-Fe2O3 nanorods possess a mesostructure with a pore size distribution in the range of 5-12 nm and high surface area,exhibiting high catalytic activity for CO oxidation.CuO nanocrystals were loaded on the surface of porous α-Fe2O3 nanorods by a deposition-precipitation method,and the catalysts exhibited superior activity for catalytic oxidation of CO,as compared with commercial α-Fe2O3 powders supported CuO catalyst.The enhanced catalytic activity was attributed to the strong interaction between the CuO nanocrystals and the support of porous α-Fe2O3 nanorods.
Jianliang Cao Yan Wang Tianyi Ma Yuping Liu Zhongyong Yuan