The ecological environment in the East China Sea(ECS)and the Yellow Sea(YS)has changed significantly due to sea-level rising and the Kuroshio incursion since the last deglaciation.In this study,biomarker records of core F10B from the mud area southwest off Cheju Island(MSWCI)were generated to evaluate phytoplankton productivity and community structure changes in response to environmental evolution during the last 14 kyr.The contents of diatom,dinoflagellate and haptophyte biomarkers(brassicasterol,dinosterol and C37alkenones)display similar trends,with increasing phytoplankton productivity during the last 14kyr due to the increased influences of the Kuroshio,and especially due to the eddy-induced upwelling during the late Holocene.On the other hand,the contents of terrestrial biomarkers(C28+C30+C32n-alkanols)and terrestrial organic matter(TOM)proxies(TMBR′and BIT)all reveal decreasing TOM input into the area around the sampling site for the 14 kyr,mostly due to sea-level ris-ing.Phytoplankton biomarker ratios reveal a shift from a haptophyte-dominated community at 6.2 2.5 kyr BP to a diatom-dominated community at 2.5 1.45 kyr BP,likely caused by a stronger cold eddy circulation system at 2.5 1.45 kyr BP in the MSWCI.
Radiocarbon(14C) measurement of dissolved organic carbon(DOC) is a very powerful tool to study the sources, transformation and cycling of carbon in the ocean. The technique, however, remains great challenges for complete and successful oxidation of sufficient DOC with low blanks for high precision carbon isotopic ratio analysis, largely due to the overwhelming proportion of salts and low DOC concentrations in the ocean. In this paper, we report an effective UV-Oxidation method for oxidizing DOC in natural waters for radiocarbon analysis by accelerator mass spectrometry(AMS). The UV-oxidation system and method show 95%± 4% oxidation efficiency and high reproducibility for DOC in both river and seawater samples. The blanks associated with the method was also low(about 3 μg C) that is critical for 14 C analysis. As a great advantage of the method, multiple water samples can be oxidized at the same time so it reduces the sample processing time substantially compared with other UV-oxidation method currently being used in other laboratories. We have used the system and method for 14 C studies of DOC in rivers, estuaries, and oceanic environments and have received promise results.
Carbon monoxide(CO) concentrations, sea-to-air fluxes and microbial consumption rate constants, along with atmospheric CO mixing ratios, were measured in the East China Sea(ECS) in autumn. Atmospheric CO mixing ratios varied from 96 to 256 ppbv, with an average of 146 ppbv(SD = 54 ppbv, n = 31). Overall, the atmospheric CO concentrations displayed a decreasing trend from inshore to offshore stations. The surface water CO concentrations in the investigated area ranged from 0.24 to 6.12 nmol L^(-1), with an average of 1.68 nmol L^(-1)(SD = 1.50 nmol L^(-1), n = 31). The surface water CO concentrations were affected significantly by sunlight. Vertical profiles showed that CO concentrations declined rapidly with depth, with the maximum appearing in the surface water. The surface CO concentrations were oversaturated, with the saturation factors ranging from 1.4 to 56.9, suggesting that the ECS was a net source of atmospheric CO. The sea-to-air fluxes of CO in the ECS ranged from 0.06 to 11.31 μmol m^(-2) d^(-1), with an average of 2.90 μmol m^(-2) d^(-1)(SD = 2.95μmol m^(-2) d^(-1), n = 31). In the incubation experiments, CO concentrations decreased exponentially with incubation time and the processes conformed to the first order reaction characteristics. The microbial CO consumption rate constants in the surface water(KCO) ranged from 0.063 to 0.22 h^(-1), with an average of 0.12 h^(-1)(SD = 0.062 h^(-1), n = 6). A negative correlation between KCO and salinity was observed in the present study.
Human activity-induced eutrophication and harmful algal blooms are main causes of the expansion of the hypoxic zone in the Changjiang Estuary. Among the many changes in biogeochemical processes, anaerobic ammonium oxidation(anammox) is proposed to play an important role in the nitrogen cycle in hypoxic areas. Ladderane lipids have been used as biomarkers to indicate anammox activity in ecosystems, but the origins of anammox bacteria and ladderanes in suspended particulates are still unclear. In this study, we report the results of a suite of biomarker analyses of suspended particulates across a salinity gradient of the Changjiang Estuary in both the spring and summer to evaluate the origins of the ladderanes and their potential as proxies for anammox activity and hypoxia. The spatio-temporal variations in terrestrial biomarkers(n-alkanes and n-alkanols), marine biomarkers(brassicasterol and dinosterol), and the Terrestrial and Marine Biomarker Ratio and Branched and Isoprenoid Tetraether indices reveal that marine organic matter was dominant in the particulates in both the spring(55%) and summer(86%) seasons. Correlations with both marine and terrestrial biomarkers suggest that ladderanes were mainly produced in the water column, and therefore that ladderane concentrations in suspended particulates in the Changjiang Estuary mainly reflect anammox activity in the water column, although changes in anammox bacterial assemblages may also have played a role in ladderane concentrations. Overall, ladderane results suggest that anammox activity was widespread in the Changjiang Estuary; but higher ladderane concentrations in the summer(especially in the upwelling zone) were correlated with lower dissolved oxygen concentrations, which suggest that they are useful proxies for hypoxia.
HU Jing WenZHANG Hai LongLI LiWANG Yao YaoZHAO Mei Xun
We present lipid biomarker records of two cores (ZYI and ZY3) from the central South Yellow Sea mud area to investigate the changes in sources and transport processes of the sedimentary organic matter (OM) throughout the Holocene. Based on the analysis of marine biomarker content (EPB (Phytoplankton Biomarker, total content of brassicasterol, dinosterol and C37-alkenones) and crenarchaeol), and terrestrial biomarkers (En-alkanols and brGDGTs) as well as TMBR' and BIT index values, the marine organic matter (MOM) and terrestrial organic matter (TOM) deposition history was reconstructed. Changes in TOM and MOM were related to variations in land vegetation density and marine productivity, as well as transport processes dominated by the oceanic circulation system. The marine biomarker contents from the South Yellow Sea have generally in- creased throughout the Holocene, indicating that the increased MOM contents were mainly controlled by the strengthening of the circulation system. The terrestrial biomarkers, on the other hand, were more variable, indicating more complex influence of TOM burial in the Yellow Sea. During the Early Holocene (7200-6000 cal yr BP), the moderate TOM input revealed by the terrestrial proxy records may result from abundant land source supply by strong river transport despite the lack of transport via circulation system. The Mid-Holocene (6000-3000 cal yr BP) was characterized by decreased terrestrial biomarker contents. The balance between the decrease in land source supply and increase of transportation by the current system of the TOM resulted in the lower but stable contents of TOM. During the Late Holocene (3000 cal yr BP to present), the TOM deposition in the South Yellow Sea increased as the current system was further enhanced and thus transported more TOM to the central South Yellow Sea, although the land supply of TOM was further reduced.
The concentrations of phosphate (PO43 ), ammonium, nitrite, nitrate, silicate, dissolved organic nitrogen (DON), dissolved or- ganic phosphorus (DOP), particulate phosphorus (PP) and particulate nitrogen (PN) along the salinity gradient were measured in the Changjiang Estuary in April 2007. The behavior of nutrient species along the continuum from the freshwater to the coastal zone is discussed. In the mixing zone between the riverine and marine waters, nitrate and phosphate behave non-conservatively, while silicate behaves conservatively. Nutrient import was quantified from the fiver load. Nutrient export to the sea was quantified from fiver discharge and from the salinity-nutrient gradient in the outer estuary. Using these data, a nitrogen and phosphorus budget was made. The internal estuarine fluxes played an important role in the nutrient estuarine fluxes, which accounted for approximately 41% of the nitrogen flux and 45% of the phosphorus flux. The mixing experiments in the laboratory generally reproduced well the inorganic process affecting nutrient dynamics in the Changjiang Estuary, indi- cating that the primary P and N transformation processes were phosphate and nitrate desorption along the salinity gradient.
YAO QingZhenYU ZhiGangLI LingLingCHEN HongTaoMI TieZhu