We present a novel unsupervised integrated score framework to generate generic extractive multi- document summaries by ranking sentences based on dynamic programming (DP) strategy. Considering that cluster-based methods proposed by other researchers tend to ignore informativeness of words when they generate summaries, our proposed framework takes relevance, diversity, informativeness and length constraint of sentences into consideration comprehensively. We apply Density Peaks Clustering (DPC) to get relevance scores and diversity scores of sentences simultaneously. Our framework produces the best performance on DUC2004, 0.396 of ROUGE-1 score, 0.094 of ROUGE-2 score and 0.143 of ROUGE-SU4 which outperforms a series of popular baselines, such as DUC Best, FGB [7], and BSTM [10].
基于声学矢量传感器(Acoustic vector sensor,AVS)和空间声源稀疏表示理论,进行了鲁棒的高精度语者声源到达角(Direction of arrival,DOA)估计方法研究。考虑混响和加性噪声影响,本文推导了AVS接收信号的向量化的协方差矩阵模型,设计了过完备字典,依此建立声源的空间稀疏表示模型,最终通过求解稀疏空间谱获得鲁棒的DOA估计。本文进行了大量的不同混响和加性噪声条件下的仿真实验和实际环境中的DOA估计实验,实验结果表明,本文提出的语者声源DOA估计方法在信噪比5-30dB范围内可获得均方根误差(Root mean square error,RMSE)小于1°的估计精度。在实际环境中也取得了2-10°误差的DOA估计结果。