2025年2月22日
星期六
|
欢迎来到南京江宁区图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
中国博士后科学基金(2005038202)
作品数:
1
被引量:4
H指数:1
相关作者:
徐勇
池艳广
更多>>
相关机构:
哈尔滨工业大学
更多>>
发文基金:
中国博士后科学基金
国家自然科学基金
广东省自然科学基金
更多>>
相关领域:
自动化与计算机技术
更多>>
相关作品
相关人物
相关机构
相关资助
相关领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
特征提取
1篇
线性鉴别分析
机构
1篇
哈尔滨工业大...
作者
1篇
池艳广
1篇
徐勇
传媒
1篇
计算机工程与...
年份
1篇
2007
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
样本典型性分析与线性鉴别分析
被引量:4
2007年
首先分析了经典LDA方法的物理意义及其局限性,然后提出了一个新的LDA方法。该方法强调训练样本的典型性与代表性,并认为相同类别中与一个样本距离较远的若干样本是同一类别中对这个样本有典型意义的样本,而不同类别中与这个样本距离较近的若干样本也是对该样本而言有典型代表意义的样本。该新的LDA方法基于定义在这些典型样本上的类间散布矩阵与类内散布矩阵实现特征提取。方法的物理意义体现为:特征提取过程中最大化样本与不同类中的典型样本间距离与最小化样本与同类中的典型样本间距离这一思路的实现,可使抽取出的不同类别的样本特征具有更大的线性可分离性。充分的理论与实验分析表明本文方法可优于经典LDA方法。
徐勇
池艳广
关键词:
特征提取
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张